These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26455513)

  • 1. Nanoscale and Single-Dot Patterning of Colloidal Quantum Dots.
    Xie W; Gomes R; Aubert T; Bisschop S; Zhu Y; Hens Z; Brainis E; Van Thourhout D
    Nano Lett; 2015 Nov; 15(11):7481-7. PubMed ID: 26455513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Patterning of Colloidal Quantum-Dot Thin Films for Enhanced and Spectrally Selective Out-Coupling of Emission.
    Prins F; Kim DK; Cui J; De Leo E; Spiegel LL; McPeak KM; Norris DJ
    Nano Lett; 2017 Mar; 17(3):1319-1325. PubMed ID: 28120610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal direct patterning of colloidal quantum dots by (extreme) ultraviolet and electron beam lithography.
    Dieleman CD; Ding W; Wu L; Thakur N; Bespalov I; Daiber B; Ekinci Y; Castellanos S; Ehrler B
    Nanoscale; 2020 May; 12(20):11306-11316. PubMed ID: 32421115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale patterning of colloidal quantum dots on transparent and metallic planar surfaces.
    Park Y; Roh YG; Kim UJ; Chung DY; Suh H; Kim J; Cheon S; Lee J; Kim TH; Cho KS; Lee CW
    Nanotechnology; 2012 Sep; 23(35):355302. PubMed ID: 22895055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh-resolution quantum dot patterning for advanced optoelectronic devices.
    Nam TW; Choi MJ; Jung YS
    Chem Commun (Camb); 2023 Mar; 59(19):2697-2710. PubMed ID: 36751869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positioning of quantum dots on metallic nanostructures.
    Kramer RK; Pholchai N; Sorger VJ; Yim TJ; Oulton R; Zhang X
    Nanotechnology; 2010 Apr; 21(14):145307. PubMed ID: 20234079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Langmuir-Blodgett monolayers of colloidal lead chalcogenide quantum dots: morphology and photoluminescence.
    Justo Y; Moreels I; Lambert K; Hens Z
    Nanotechnology; 2010 Jul; 21(29):295606. PubMed ID: 20601759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optoelectronic Neural Interfaces Based on Quantum Dots.
    Han M; Karatum O; Nizamoglu S
    ACS Appl Mater Interfaces; 2022 May; 14(18):20468-20490. PubMed ID: 35482955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical properties of HgTe colloidal quantum dots.
    Lhuillier E; Keuleyan S; Guyot-Sionnest P
    Nanotechnology; 2012 May; 23(17):175705. PubMed ID: 22481378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Zero-Dimensional Quantum Confinement in Transition-Metal Dichalcogenide Heterostructures.
    Price CC; Frey NC; Jariwala D; Shenoy VB
    ACS Nano; 2019 Jul; 13(7):8303-8311. PubMed ID: 31241897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitonic Energy Transfer within InP/ZnS Quantum Dot Langmuir-Blodgett Assemblies.
    Bahmani Jalali H; Melikov R; Sadeghi S; Nizamoglu S
    J Phys Chem C Nanomater Interfaces; 2018 Jun; 122(22):11616-11622. PubMed ID: 30057655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoresist Contact Patterning of Quantum Dot Films.
    Keum H; Jiang Y; Park JK; Flanagan JC; Shim M; Kim S
    ACS Nano; 2018 Oct; 12(10):10024-10031. PubMed ID: 30247027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleavable Ligands Enable Uniform Close Packing in Colloidal Quantum Dot Solids.
    Carey GH; Yuan M; Comin R; Voznyy O; Sargent EH
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21995-2000. PubMed ID: 26378717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale Patterning of Colloidal Nanocrystal Films for Nanophotonic Applications Using Direct Write Electron Beam Lithography.
    Dement DB; Quan MK; Ferry VE
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14970-14979. PubMed ID: 30932468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors.
    Huang H; Dorn A; Nair GP; Bulović V; Bawendi MG
    Nano Lett; 2007 Dec; 7(12):3781-6. PubMed ID: 18034504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Anderson-Josephson quantum dot-a theory perspective.
    Meden V
    J Phys Condens Matter; 2019 Apr; 31(16):163001. PubMed ID: 30630142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal quantum dot solar cells exploiting hierarchical structuring.
    Labelle AJ; Thon SM; Masala S; Adachi MM; Dong H; Farahani M; Ip AH; Fratalocchi A; Sargent EH
    Nano Lett; 2015 Feb; 15(2):1101-8. PubMed ID: 25547345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy level tuned indium arsenide colloidal quantum dot films for efficient photovoltaics.
    Song JH; Choi H; Pham HT; Jeong S
    Nat Commun; 2018 Oct; 9(1):4267. PubMed ID: 30323251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation.
    Carey GH; Levina L; Comin R; Voznyy O; Sargent EH
    Adv Mater; 2015 Jun; 27(21):3325-30. PubMed ID: 25899173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Area Heterostructures from Graphene and Encapsulated Colloidal Quantum Dots via the Langmuir-Blodgett Method.
    Black A; Roberts J; Acebrón M; Bernardo-Gavito R; Alsharif G; Urbanos FJ; Juárez BH; Kolosov OV; Robinson BJ; Miranda R; Vázquez de Parga AL; Granados D; Young RJ
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6805-6809. PubMed ID: 29436818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.