These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 26455640)
21. The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent. Gómez-Sagasti MT; Epelde L; Anza M; Urra J; Alkorta I; Garbisu C J Hazard Mater; 2019 Feb; 364():591-599. PubMed ID: 30390579 [TBL] [Abstract][Full Text] [Related]
22. Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Sirk KM; Saleh NB; Phenrat T; Kim HJ; Dufour B; Jeongbin O; Golas PL; Matyjaszewski K; Lowry GV; Tilton RD Environ Sci Technol; 2009 May; 43(10):3803-8. PubMed ID: 19544891 [TBL] [Abstract][Full Text] [Related]
23. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media. Busch J; Meißner T; Potthoff A; Oswald SE J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524 [TBL] [Abstract][Full Text] [Related]
24. Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish. Chen PJ; Tan SW; Wu WL Environ Sci Technol; 2012 Aug; 46(15):8431-9. PubMed ID: 22747062 [TBL] [Abstract][Full Text] [Related]
25. Evaluating phytotoxicity of bare and starch-stabilized zero-valent iron nanoparticles in mung bean. Sun Y; Jing R; Zheng F; Zhang S; Jiao W; Wang F Chemosphere; 2019 Dec; 236():124336. PubMed ID: 31310976 [TBL] [Abstract][Full Text] [Related]
26. Toxicity, accumulation, and trophic transfer of chemically and biologically synthesized nano zero valent iron in a two species freshwater food chain. Bhuvaneshwari M; Kumar D; Roy R; Chakraborty S; Parashar A; Mukherjee A; Chandrasekaran N; Mukherjee A Aquat Toxicol; 2017 Feb; 183():63-75. PubMed ID: 28024216 [TBL] [Abstract][Full Text] [Related]
27. Residual impact of aged nZVI on heavy metal-polluted soils. Fajardo C; Gil-Díaz M; Costa G; Alonso J; Guerrero AM; Nande M; Lobo MC; Martín M Sci Total Environ; 2015 Dec; 535():79-84. PubMed ID: 25863574 [TBL] [Abstract][Full Text] [Related]
28. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles. Jiamjitrpanich W; Polprasert C; Parkpian P; Delaune RD; Jugsujinda A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):263-74. PubMed ID: 20390867 [TBL] [Abstract][Full Text] [Related]
29. Stabilization of engineered zero-valent nanoiron with Na-acrylic copolymer enhances spermiotoxicity. Kadar E; Tarran GA; Jha AN; Al-Subiai SN Environ Sci Technol; 2011 Apr; 45(8):3245-51. PubMed ID: 21291273 [TBL] [Abstract][Full Text] [Related]
30. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Wang J; Fang Z; Cheng W; Yan X; Tsang PE; Zhao D Environ Pollut; 2016 Mar; 210():338-45. PubMed ID: 26803790 [TBL] [Abstract][Full Text] [Related]
31. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. El-Temsah YS; Joner EJ Chemosphere; 2013 Jun; 92(1):131-7. PubMed ID: 23522781 [TBL] [Abstract][Full Text] [Related]
32. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. Kim H; Hong HJ; Jung J; Kim SH; Yang JW J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289 [TBL] [Abstract][Full Text] [Related]
33. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Machado S; Pacheco JG; Nouws HP; Albergaria JT; Delerue-Matos C Sci Total Environ; 2015 Nov; 533():76-81. PubMed ID: 26151651 [TBL] [Abstract][Full Text] [Related]
34. Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri. Saccà ML; Fajardo C; Martinez-Gomariz M; Costa G; Nande M; Martin M PLoS One; 2014; 9(2):e89677. PubMed ID: 24586957 [TBL] [Abstract][Full Text] [Related]
35. The effect of organic matter humification (aromaticity and oxidation degree) on structural and nanomorphological characteristics of humic nanocomposites of metallic platinum. Aleksandrova G; Lesnichaya M; Dolmaa G; Sukhov B; Regdel D Environ Res; 2020 Nov; 190():109878. PubMed ID: 32739625 [TBL] [Abstract][Full Text] [Related]
36. Effects of physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and alpha-Fe(2)O(3) nanoparticles. Liu TY; Zhao L; Tan X; Liu SJ; Li JJ; Qi Y; Mao GZ Water Sci Technol; 2010; 61(11):2759-67. PubMed ID: 20489248 [TBL] [Abstract][Full Text] [Related]
37. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. Wei YT; Wu SC; Yang SW; Che CH; Lien HL; Huang DH J Hazard Mater; 2012 Apr; 211-212():373-80. PubMed ID: 22118849 [TBL] [Abstract][Full Text] [Related]
38. Ecotoxicity testing and environmental risk assessment of iron nanomaterials for sub-surface remediation - Recommendations from the FP7 project NanoRem. Hjorth R; Coutris C; Nguyen NHA; Sevcu A; Gallego-Urrea JA; Baun A; Joner EJ Chemosphere; 2017 Sep; 182():525-531. PubMed ID: 28521168 [TBL] [Abstract][Full Text] [Related]
39. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Gil-Díaz M; Alonso J; Rodríguez-Valdés E; Gallego JR; Lobo MC Sci Total Environ; 2017 Apr; 584-585():1324-1332. PubMed ID: 28190571 [TBL] [Abstract][Full Text] [Related]
40. Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Chen PJ; Su CH; Tseng CY; Tan SW; Cheng CH Mar Pollut Bull; 2011; 63(5-12):339-46. PubMed ID: 21440267 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]