These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26455768)

  • 21. Four-year experience with the routine use of the programmable Hakim valve in the management of children with hydrocephalus.
    Rohde V; Mayfrank L; Ramakers VT; Gilsbach JM
    Acta Neurochir (Wien); 1998; 140(11):1127-34. PubMed ID: 9870057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disparity between adjusted and actual opening cerebrospinal fluid pressure in a patient with the Codman Hakim programmable valve: occult form of shunt failure due to head banging. Case report.
    Sato K; Shimizu S; Utsuki S; Suzuki S; Oka H; Fujii K
    J Neurosurg; 2006 Nov; 105(5 Suppl):425-7. PubMed ID: 17328269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic toys: forbidden for pediatric patients with certain programmable shunt valves?
    Zuzak TJ; Balmer B; Schmidig D; Boltshauser E; Grotzer MA
    Childs Nerv Syst; 2009 Feb; 25(2):161-4. PubMed ID: 19057906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A clinical survey of hydrocephalus and current treatment for hydrocephalus in Japan: analysis by nationwide questionnaire.
    Miyake H; Ohta T; Kajimoto Y; Ogawa D
    Childs Nerv Syst; 1999 Aug; 15(8):363-8. PubMed ID: 10447603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The programmable adult Codman Hakim valve is useful even in very small children with hydrocephalus. A 7-year retrospective study with special focus on cost/benefit analysis.
    Arnell K; Eriksson E; Olsen L
    Eur J Pediatr Surg; 2006 Feb; 16(1):1-7. PubMed ID: 16544218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A rare case of shunt malfunction attributable to blockage of a Codman-Hakim programmable shunt valve.
    Kurosaki K; Hamada H; Hayashi N; Kurimoto M; Hirashima Y; Endo S
    Childs Nerv Syst; 2002 Apr; 18(3-4):183-5. PubMed ID: 11981632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Programming jammed Codman Hakim programmable valves: study of an explanted valve and successful programming in a patient.
    Wong ST; Wen E; Fong D
    J Neurosurg Pediatr; 2013 Aug; 12(2):160-5. PubMed ID: 23705870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overdrainage of cerebrospinal fluid caused by detachment of the pressure control cam in a programmable valve after 3-tesla magnetic resonance imaging.
    Watanabe A; Seguchi T; Hongo K
    J Neurosurg; 2010 Feb; 112(2):425-7. PubMed ID: 19408984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Hakim programmable valve: reasons for reprogramming failures.
    Mauer UM; Schuler J; Kunz U
    J Neurosurg; 2007 Oct; 107(4):788-91. PubMed ID: 17937224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrodynamic properties of hydrocephalus shunts.
    Czosnyka Z; Czosnyka M; Richards H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():334-9. PubMed ID: 9779223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Obstruction of a Codman-Hakim programmable valve by a migrating pressure control cam.
    Shimizu S; Utsuki S; Suzuki S; Oka H; Fujii K
    J Neurosurg; 2005 Sep; 103(3 Suppl):270-1. PubMed ID: 16238082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experience with a programmable valve shunt system.
    Yamashita N; Kamiya K; Yamada K
    J Neurosurg; 1999 Jul; 91(1):26-31. PubMed ID: 10389876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Programmable shunt valves: in vitro assessment of safety of the magnetic field generated by a portable game machine.
    Nakashima K; Nakajo T; Kawamo M; Kato A; Ishigaki S; Murakami H; Imaizumi Y; Izumiyama H
    Neurol Med Chir (Tokyo); 2011; 51(9):635-8. PubMed ID: 21946726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Telemetric assessment of intracranial pressure changes consequent to manipulations of the Codman-Medos programmable shunt valve.
    Frim DM; Lathrop D
    Pediatr Neurosurg; 2000 Nov; 33(5):237-242. PubMed ID: 11155059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Breakage of shunt devices (Sophy programmable pressure valve) following implantation in the hypochondriac region.
    Aihara N; Takagi T; Hashimoto N; Fukushima T; Karasawa K; Fuse T
    Childs Nerv Syst; 1997; 13(11-12):636-8. PubMed ID: 9454985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A rare case of shunt malfunction attributable to a broken Codman-Hakim programmable shunt valve after a blow to the head.
    Okazaki T; Oki S; Migita K; Kurisu K
    Pediatr Neurosurg; 2005; 41(5):241-3. PubMed ID: 16195675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disruption of silicone valve housing in a Codman Hakim Precision valve with integrated Siphonguard.
    Woerdeman PA; Cochrane DD
    J Neurosurg Pediatr; 2014 May; 13(5):532-5. PubMed ID: 24635137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Smartphones and Programmable Shunts: Are These Indispensable Phones Safe and Smart?
    Ozturk S; Cakin H; Kurtuldu H; Kocak O; Erol FS; Kaplan M
    World Neurosurg; 2017 Jun; 102():518-525. PubMed ID: 28342922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unexpectedly Smaller Artifacts of 3.0-T Magnetic Resonance Imaging than 1.5 T: Recommendation of 3.0-T Scanners for Patients with Magnet-Resistant Adjustable Ventriculoperitoneal Shunt Devices.
    Amano Y; Kuroda N; Uchida D; Sakakura Y; Nakatogawa H; Ando N; Nakayama T; Sato H; Masui T; Sameshima T; Tanaka T
    World Neurosurg; 2019 Oct; 130():e393-e399. PubMed ID: 31260847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.