BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26455882)

  • 1. A hybrid method for classifying cognitive states from fMRI data.
    Parida S; Dehuri S; Cho SB; Cacha LA; Poznanski RR
    J Integr Neurosci; 2015 Sep; 14(3):355-68. PubMed ID: 26455882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. fMRI pattern classification using neuroanatomically constrained boosting.
    Martínez-Ramón M; Koltchinskii V; Heileman GL; Posse S
    Neuroimage; 2006 Jul; 31(3):1129-41. PubMed ID: 16529955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
    De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E
    Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fuzzy integral method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification across multiple subjects.
    Cacha LA; Parida S; Dehuri S; Cho SB; Poznanski RR
    J Integr Neurosci; 2016 Dec; 15(4):593-606. PubMed ID: 28093025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from fMRI data.
    Zhang C; Song S; Wen X; Yao L; Long Z
    J Neurosci Methods; 2015 Apr; 245():15-24. PubMed ID: 25681758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity.
    Shen G; Zhang J; Wang M; Lei D; Yang G; Zhang S; Du X
    Eur J Neurosci; 2014 Jun; 39(12):2071-82. PubMed ID: 24661456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding brain states from fMRI connectivity graphs.
    Richiardi J; Eryilmaz H; Schwartz S; Vuilleumier P; Van De Ville D
    Neuroimage; 2011 May; 56(2):616-26. PubMed ID: 20541019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voxel selection framework in multi-voxel pattern analysis of FMRI data for prediction of neural response to visual stimuli.
    Chou CA; Kampa K; Mehta SH; Tungaraza RF; Chaovalitwongse WA; Grabowski TJ
    IEEE Trans Med Imaging; 2014 Apr; 33(4):925-34. PubMed ID: 24710161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis.
    Wang N; Zeng W; Chen L
    J Neurosci Methods; 2013 May; 216(1):49-61. PubMed ID: 23563324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the cognitive states of the subjects in functional magnetic resonance imaging signals using the combination of feature selection strategies.
    Daliri MR
    Brain Topogr; 2012 Apr; 25(2):129-35. PubMed ID: 22130788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of pattern recognition methods in classifying high-resolution BOLD signals obtained at high magnetic field in monkeys.
    Ku SP; Gretton A; Macke J; Logothetis NK
    Magn Reson Imaging; 2008 Sep; 26(7):1007-14. PubMed ID: 18691999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An empirical comparison of different LDA methods in fMRI-based brain states decoding.
    Xia M; Song S; Yao L; Long Z
    Biomed Mater Eng; 2015; 26 Suppl 1():S1185-92. PubMed ID: 26405876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving spatiotemporal characterization of cognitive processes with data-driven EEG-fMRI analysis.
    Mijović B; Vanderperren K; Van Huffel S; De Vos M
    Prilozi; 2012; 33(1):373-90. PubMed ID: 23037183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.
    Zafar R; Kamel N; Naufal M; Malik AS; Dass SC; Ahmad RF; Abdullah JM; Reza F
    J Integr Neurosci; 2017; 16(3):275-289. PubMed ID: 28891512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretable whole-brain prediction analysis with GraphNet.
    Grosenick L; Klingenberg B; Katovich K; Knutson B; Taylor JE
    Neuroimage; 2013 May; 72():304-21. PubMed ID: 23298747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A non-voxel based feature extraction to detect cognitive states in fMRI.
    Dua S; Srinivasan P
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4431-4. PubMed ID: 19163697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feature selection for fMRI-based deception detection.
    Jin B; Strasburger A; Laken SJ; Kozel FA; Johnson KA; George MS; Lu X
    BMC Bioinformatics; 2009 Sep; 10 Suppl 9(Suppl 9):S15. PubMed ID: 19761569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial correspondence between functional MRI (fMRI) activations and cortical current density maps of event-related potentials (ERP): a study with four tasks.
    Minati L; Rosazza C; Zucca I; D'Incerti L; Scaioli V; Bruzzone MG
    Brain Topogr; 2008 Dec; 21(2):112-27. PubMed ID: 18758934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive neuropsychological mapping battery for functional magnetic resonance imaging.
    Karakas S; Baran Z; Ceylan AO; Tileylioglu E; Tali T; Karakas HM
    Int J Psychophysiol; 2013 Nov; 90(2):215-34. PubMed ID: 23892066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting brain states associated with object categories from fMRI data.
    Behroozi M; Daliri MR
    J Integr Neurosci; 2014 Dec; 13(4):645-67. PubMed ID: 25352153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.