These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26455901)

  • 1. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate.
    Yan L; Zhang JQ; Zhang S; Feng M
    Sci Rep; 2015 Oct; 5():14977. PubMed ID: 26455901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect.
    Zhang JQ; Zhang S; Zou JH; Chen L; Yang W; Li Y; Feng M
    Opt Express; 2013 Dec; 21(24):29695-710. PubMed ID: 24514521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser cooling of a nanomechanical resonator mode to its quantum ground state.
    Wilson-Rae I; Zoller P; Imamoğlu A
    Phys Rev Lett; 2004 Feb; 92(7):075507. PubMed ID: 14995872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser cooling of a nanomechanical oscillator into its quantum ground state.
    Chan J; Alegre TP; Safavi-Naeini AH; Hill JT; Krause A; Gröblacher S; Aspelmeyer M; Painter O
    Nature; 2011 Oct; 478(7367):89-92. PubMed ID: 21979049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current.
    Stadler P; Belzig W; Rastelli G
    Phys Rev Lett; 2014 Jul; 113(4):047201. PubMed ID: 25105648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive cooling of a micromechanical oscillator with a resonant electric circuit.
    Brown KR; Britton J; Epstein RJ; Chiaverini J; Leibfried D; Wineland DJ
    Phys Rev Lett; 2007 Sep; 99(13):137205. PubMed ID: 17930631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ground state cooling of a nanomechanical resonator in the nonresolved regime via quantum interference.
    Xia K; Evers J
    Phys Rev Lett; 2009 Nov; 103(22):227203. PubMed ID: 20366124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heralded Control of Mechanical Motion by Single Spins.
    Rao DD; Momenzadeh SA; Wrachtrup J
    Phys Rev Lett; 2016 Aug; 117(7):077203. PubMed ID: 27563995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom.
    Zhang S; Zhang JQ; Zhang J; Wu CW; Wu W; Chen PX
    Opt Express; 2014 Nov; 22(23):28118-31. PubMed ID: 25402052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparing entangled states between two NV centers via the damping of nanomechanical resonators.
    Li XX; Li PB; Ma SL; Li FL
    Sci Rep; 2017 Oct; 7(1):14116. PubMed ID: 29074851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator.
    Teissier J; Barfuss A; Appel P; Neu E; Maletinsky P
    Phys Rev Lett; 2014 Jul; 113(2):020503. PubMed ID: 25062153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit.
    Peterson RW; Purdy TP; Kampel NS; Andrews RW; Yu PL; Lehnert KW; Regal CA
    Phys Rev Lett; 2016 Feb; 116(6):063601. PubMed ID: 26918990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-kelvin optical cooling of a micromechanical resonator.
    Kleckner D; Bouwmeester D
    Nature; 2006 Nov; 444(7115):75-8. PubMed ID: 17080086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband optical cooling of molecular rotors from room temperature to the ground state.
    Lien CY; Seck CM; Lin YW; Nguyen JH; Tabor DA; Odom BC
    Nat Commun; 2014 Sep; 5():4783. PubMed ID: 25179449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sideband cooling beyond the quantum backaction limit with squeezed light.
    Clark JB; Lecocq F; Simmonds RW; Aumentado J; Teufel JD
    Nature; 2017 Jan; 541(7636):191-195. PubMed ID: 28079081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tunable optical Kerr switch based on a nanomechanical resonator coupled to a quantum dot.
    Li JJ; Zhu KD
    Nanotechnology; 2010 May; 21(20):205501. PubMed ID: 20413838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomechanical analog of a laser: amplification of mechanical oscillations by stimulated zeeman transitions.
    Bargatin I; Roukes ML
    Phys Rev Lett; 2003 Sep; 91(13):138302. PubMed ID: 14525343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid spin-microcantilever sensor for environmental, chemical, and biological detection.
    Wu WH; Zhu KD
    Nanotechnology; 2015 Jan; 26(1):015501. PubMed ID: 25483887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures.
    Okamoto H; Watanabe T; Ohta R; Onomitsu K; Gotoh H; Sogawa T; Yamaguchi H
    Nat Commun; 2015 Oct; 6():8478. PubMed ID: 26477487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of quantum motion of a nanomechanical resonator.
    Safavi-Naeini AH; Chan J; Hill JT; Alegre TP; Krause A; Painter O
    Phys Rev Lett; 2012 Jan; 108(3):033602. PubMed ID: 22400740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.