BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 26456113)

  • 1. An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells.
    Whitney JC; Quentin D; Sawai S; LeRoux M; Harding BN; Ledvina HE; Tran BQ; Robinson H; Goo YA; Goodlett DR; Raunser S; Mougous JD
    Cell; 2015 Oct; 163(3):607-19. PubMed ID: 26456113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial backstabbing: EF-Tu, brute?
    Cabeen MT; Losick R
    Cell; 2015 Oct; 163(3):537-9. PubMed ID: 26496597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation into the catalytic role for the tryptophan residues within domain III of Pseudomonas aeruginosa exotoxin A.
    Beattie BK; Prentice GA; Merrill AR
    Biochemistry; 1996 Dec; 35(48):15134-42. PubMed ID: 8952460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salmonella antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of EF-Tu P-loop.
    Jurėnas D; Rey M; Byrne D; Chamot-Rooke J; Terradot L; Cascales E
    Nucleic Acids Res; 2022 Dec; 50(22):13114-13127. PubMed ID: 36484105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of loading and translocation of type VI secretion system effector Tse6.
    Quentin D; Ahmad S; Shanthamoorthy P; Mougous JD; Whitney JC; Raunser S
    Nat Microbiol; 2018 Oct; 3(10):1142-1152. PubMed ID: 30177742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Entamoeba histolytica ADP-ribosyl transferase from the diphtheria toxin family modifies the bacterial elongation factor Tu.
    Avila EE; Rodriguez OI; Marquez JA; Berghuis AM
    Mol Biochem Parasitol; 2016 Jun; 207(2):68-74. PubMed ID: 27234208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The tuberculosis necrotizing toxin is an NAD
    Tak U; Vlach J; Garza-Garcia A; William D; Danilchanka O; de Carvalho LPS; Saad JS; Niederweis M
    J Biol Chem; 2019 Mar; 294(9):3024-3036. PubMed ID: 30593509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Vis Toxin, a Novel ADP-Ribosyltransferase from Vibrio splendidus.
    Ravulapalli R; Lugo MR; Pfoh R; Visschedyk D; Poole A; Fieldhouse RJ; Pai EF; Merrill AR
    Biochemistry; 2015 Sep; 54(38):5920-36. PubMed ID: 26352925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nature and character of the transition state for the ADP-ribosyltransferase reaction.
    Jørgensen R; Wang Y; Visschedyk D; Merrill AR
    EMBO Rep; 2008 Aug; 9(8):802-9. PubMed ID: 18583986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of mammalian ADP-ribosylation cycles.
    Okazaki IJ; Zolkiewska A; Takada T; Moss J
    Biochimie; 1995; 77(5):319-25. PubMed ID: 8527484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of regulatory domains in ADP-ribosyltransferase-1 that determine transferase and NAD glycohydrolase activities.
    Bourgeois C; Okazaki I; Cavanaugh E; Nightingale M; Moss J
    J Biol Chem; 2003 Jul; 278(29):26351-5. PubMed ID: 12721285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
    Han S; Arvai AS; Clancy SB; Tainer JA
    J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer RNAs.
    Michalska K; Gucinski GC; Garza-Sánchez F; Johnson PM; Stols LM; Eschenfeldt WH; Babnigg G; Low DA; Goulding CW; Joachimiak A; Hayes CS
    Nucleic Acids Res; 2017 Sep; 45(17):10306-10320. PubMed ID: 28973472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A.
    Iglewski BH; Sadoff J; Bjorn MJ; Maxwell ES
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3211-5. PubMed ID: 210453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The C-terminal Helix of Pseudomonas aeruginosa Elongation Factor Ts Tunes EF-Tu Dynamics to Modulate Nucleotide Exchange.
    De Laurentiis EI; Mercier E; Wieden HJ
    J Biol Chem; 2016 Oct; 291(44):23136-23148. PubMed ID: 27624934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases.
    Han S; Tainer JA
    Int J Med Microbiol; 2002 Feb; 291(6-7):523-9. PubMed ID: 11890553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of the elongation factor Tu by mosquitocidal toxin-catalyzed mono-ADP-ribosylation.
    Schirmer J; Wieden HJ; Rodnina MV; Aktories K
    Appl Environ Microbiol; 2002 Oct; 68(10):4894-9. PubMed ID: 12324336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characterization of a novel membrane-associated lymphocyte NAD:arginine ADP-ribosyltransferase.
    Okazaki IJ; Kim HJ; Moss J
    J Biol Chem; 1996 Sep; 271(36):22052-7. PubMed ID: 8703012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of Streptococcus pyogenes immunity to its NAD+ glycohydrolase toxin.
    Smith CL; Ghosh J; Elam JS; Pinkner JS; Hultgren SJ; Caparon MG; Ellenberger T
    Structure; 2011 Feb; 19(2):192-202. PubMed ID: 21300288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudomonas aeruginosa exoenzyme S is a biglutamic acid ADP-ribosyltransferase.
    Radke J; Pederson KJ; Barbieri JT
    Infect Immun; 1999 Mar; 67(3):1508-10. PubMed ID: 10024602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.