These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 26456172)

  • 1. Data-Driven and Predefined ROI-Based Quantification of Long-Term Resting-State fMRI Reproducibility.
    Song X; Panych LP; Chen NK
    Brain Connect; 2016 Mar; 6(2):136-51. PubMed ID: 26456172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A SVM-based quantitative fMRI method for resting-state functional network detection.
    Song X; Chen NK
    Magn Reson Imaging; 2014 Sep; 32(7):819-31. PubMed ID: 24928301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially regularized machine learning for task and resting-state fMRI.
    Song X; Panych LP; Chen NK
    J Neurosci Methods; 2016 Jan; 257():214-28. PubMed ID: 26470627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying temporal correlations: a test-retest evaluation of functional connectivity in resting-state fMRI.
    Fiecas M; Ombao H; van Lunen D; Baumgartner R; Coimbra A; Feng D
    Neuroimage; 2013 Jan; 65():231-41. PubMed ID: 23032492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches.
    Kang J; Wang L; Yan C; Wang J; Liang X; He Y
    Neuroimage; 2011 Jun; 56(3):1222-34. PubMed ID: 21420500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional connectivity during resting-state functional MR imaging: study of the correspondence between independent component analysis and region-of-interest-based methods.
    Rosazza C; Minati L; Ghielmetti F; Mandelli ML; Bruzzone MG
    AJNR Am J Neuroradiol; 2012 Jan; 33(1):180-7. PubMed ID: 21998099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical power and prediction accuracy in multisite resting-state fMRI connectivity.
    Dansereau C; Benhajali Y; Risterucci C; Pich EM; Orban P; Arnold D; Bellec P
    Neuroimage; 2017 Apr; 149():220-232. PubMed ID: 28161310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AICHA: An atlas of intrinsic connectivity of homotopic areas.
    Joliot M; Jobard G; Naveau M; Delcroix N; Petit L; Zago L; Crivello F; Mellet E; Mazoyer B; Tzourio-Mazoyer N
    J Neurosci Methods; 2015 Oct; 254():46-59. PubMed ID: 26213217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest.
    van de Ven VG; Formisano E; Prvulovic D; Roeder CH; Linden DE
    Hum Brain Mapp; 2004 Jul; 22(3):165-78. PubMed ID: 15195284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators.
    Mejia AF; Nebel MB; Shou H; Crainiceanu CM; Pekar JJ; Mostofsky S; Caffo B; Lindquist MA
    Neuroimage; 2015 May; 112():14-29. PubMed ID: 25731998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A NIRS-fMRI study of resting state network.
    Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G
    Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A resting-state connectivity metric independent of temporal signal-to-noise ratio and signal amplitude.
    Golestani AM; Goodyear BG
    Brain Connect; 2011; 1(2):159-67. PubMed ID: 22433009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizations of resting-state modulatory interactions in the human brain.
    Di X; Biswal BB
    J Neurophysiol; 2015 Nov; 114(5):2785-96. PubMed ID: 26334022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining spatial independent component analysis with regression to identify the subcortical components of resting-state FMRI functional networks.
    Malherbe C; Messé A; Bardinet E; Pélégrini-Issac M; Perlbarg V; Marrelec G; Worbe Y; Yelnik J; Lehéricy S; Benali H
    Brain Connect; 2014 Apr; 4(3):181-92. PubMed ID: 24575752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study.
    Duan L; Zhang YJ; Zhu CZ
    Neuroimage; 2012 May; 60(4):2008-18. PubMed ID: 22366082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.
    Khazaee A; Ebrahimzadeh A; Babajani-Feremi A
    Clin Neurophysiol; 2015 Nov; 126(11):2132-41. PubMed ID: 25907414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of long-term reproducibility of intrinsic connectivity network mapping: a resting-state fMRI study.
    Chou YH; Panych LP; Dickey CC; Petrella JR; Chen NK
    AJNR Am J Neuroradiol; 2012 May; 33(5):833-8. PubMed ID: 22268094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regions of interest for resting-state fMRI analysis determined by inter-voxel cross-correlation.
    Golestani AM; Goodyear BG
    Neuroimage; 2011 May; 56(1):246-51. PubMed ID: 21338691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.