BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26456246)

  • 1. Carboxymethyl starch mucoadhesive microspheres as gastroretentive dosage form.
    Lemieux M; Gosselin P; Mateescu MA
    Int J Pharm; 2015 Dec; 496(2):497-508. PubMed ID: 26456246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of protonation ratio on properties of carboxymethyl starch excipient at various substitution degrees: Structural insights and drug release kinetics.
    Assaad E; Mateescu MA
    Int J Pharm; 2010 Jul; 394(1-2):75-84. PubMed ID: 20435114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The NCI-N87 cell line as a gastric epithelial barrier model for drug permeability assay.
    Lemieux M; Bouchard F; Gosselin P; Paquin J; Mateescu MA
    Biochem Biophys Res Commun; 2011 Sep; 412(3):429-34. PubMed ID: 21821011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of drying procedure and of low degree of substitution on the structural and drug release properties of carboxymethyl starch.
    Lemieux M; Gosselin P; Mateescu MA
    AAPS PharmSciTech; 2010 Jun; 11(2):775-85. PubMed ID: 20443088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carboxymethyl starch and lecithin complex as matrix for targeted drug delivery: I. Monolithic mesalamine forms for colon delivery.
    Mihaela Friciu M; Canh Le T; Ispas-Szabo P; Mateescu MA
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):521-30. PubMed ID: 23562535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of different substituted carboxymethyl starch microgels and their interactions with lysozyme.
    Zhang B; Tao H; Wei B; Jin Z; Xu X; Tian Y
    PLoS One; 2014; 9(12):e114634. PubMed ID: 25490774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carboxymethyl high amylose starch as excipient for controlled drug release: mechanistic study and the influence of degree of substitution.
    Lemieux M; Gosselin P; Mateescu MA
    Int J Pharm; 2009 Dec; 382(1-2):172-82. PubMed ID: 19716866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developments on carboxymethyl starch-based smart systems as promising drug carriers: A review.
    Pooresmaeil M; Namazi H
    Carbohydr Polym; 2021 Apr; 258():117654. PubMed ID: 33593542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carboxymethyl Starch Excipients for Drug Chronodelivery.
    Ispas-Szabo P; De Koninck P; Calinescu C; Mateescu MA
    AAPS PharmSciTech; 2017 Jul; 18(5):1673-1682. PubMed ID: 27686941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study on the mitoxantrone carboxymethyl starch microspheres for hepatic artery chemoembolization].
    Zhang Z; Wei Z; Wang L; Liao F
    Yao Xue Xue Bao; 1998 Oct; 33(10):772-7. PubMed ID: 12016932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carboxymethyl starch/montmorillonite composite microparticles: Properties and controlled release of isoproturon.
    Wilpiszewska K; Spychaj T; Paździoch W
    Carbohydr Polym; 2016 Jan; 136():101-6. PubMed ID: 26572334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyelectrolyte complex of carboxymethyl starch and chitosan as protein carrier: oral administration of ovalbumin.
    Assaad E; Blemur L; Lessard M; Mateescu MA
    J Biomater Sci Polym Ed; 2012; 23(13):1713-28. PubMed ID: 21967707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug release from starch-acetate microparticles and films with and without incorporated alpha-amylase.
    Tuovinen L; Peltonen S; Liikola M; Hotakainen M; Lahtela-Kakkonen M; Poso A; Järvinen K
    Biomaterials; 2004 Aug; 25(18):4355-62. PubMed ID: 15046926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of oral mucoadhesive microspheres in man on the basis of the pharmacokinetics of furosemide and riboflavin, compounds with limited gastrointestinal absorption sites.
    Akiyama Y; Nagahara N; Nara E; Kitano M; Iwasa S; Yamamoto I; Azuma J; Ogawa Y
    J Pharm Pharmacol; 1998 Feb; 50(2):159-66. PubMed ID: 9530983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced in vitro permeation of furosemide loaded into thermally carbonized mesoporous silicon (TCPSi) microparticles.
    Kaukonen AM; Laitinen L; Salonen J; Tuura J; Heikkilä T; Limnell T; Hirvonen J; Lehto VP
    Eur J Pharm Biopharm; 2007 Jun; 66(3):348-56. PubMed ID: 17240128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poloxamer 407 microspheres for orotransmucosal drug delivery. Part I: formulation, manufacturing and characterization.
    Albertini B; Passerini N; Di Sabatino M; Monti D; Burgalassi S; Chetoni P; Rodriguez L
    Int J Pharm; 2010 Oct; 399(1-2):71-9. PubMed ID: 20696227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Starch-based nanocapsules fabricated through layer-by-layer assembly for oral delivery of protein to lower gastrointestinal tract.
    Zhang Y; Chi C; Huang X; Zou Q; Li X; Chen L
    Carbohydr Polym; 2017 Sep; 171():242-251. PubMed ID: 28578960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical and release properties of carboxymethylated starches of Dioscorea from Jharkhand.
    Vashisht D; Pandey A; Jayaram Kumar K
    Int J Biol Macromol; 2015 Mar; 74():523-9. PubMed ID: 25561049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of mucoadhesive microspheres of acyclovir with enhanced bioavailability.
    Tao Y; Lu Y; Sun Y; Gu B; Lu W; Pan J
    Int J Pharm; 2009 Aug; 378(1-2):30-6. PubMed ID: 19465102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoprecipitation with sonication for enhancement of oral bioavailability of furosemide.
    Sahu BP; Das MK
    Acta Pol Pharm; 2014; 71(1):129-37. PubMed ID: 24779201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.