These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Reductive inactivation of the hemiaminal pharmacophore for resistance against tetrahydroisoquinoline antibiotics. Wen WH; Zhang Y; Zhang YY; Yu Q; Jiang CC; Tang MC; Pu JY; Wu L; Zhao YL; Shi T; Zhou J; Tang GL Nat Commun; 2021 Dec; 12(1):7085. PubMed ID: 34873166 [TBL] [Abstract][Full Text] [Related]
4. A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids. Pyne ME; Kevvai K; Grewal PS; Narcross L; Choi B; Bourgeois L; Dueber JE; Martin VJJ Nat Commun; 2020 Jul; 11(1):3337. PubMed ID: 32620756 [TBL] [Abstract][Full Text] [Related]
5. Chemical Research on Antitumor Isoquinoline Marine Natural Products and Related Compounds. Saito N Chem Pharm Bull (Tokyo); 2021; 69(2):155-177. PubMed ID: 33518599 [TBL] [Abstract][Full Text] [Related]
6. Hijacking a hydroxyethyl unit from a central metabolic ketose into a nonribosomal peptide assembly line. Peng C; Pu JY; Song LQ; Jian XH; Tang MC; Tang GL Proc Natl Acad Sci U S A; 2012 May; 109(22):8540-5. PubMed ID: 22586110 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the saframycin A gene cluster from Streptomyces lavendulae NRRL 11002 revealing a nonribosomal peptide synthetase system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. Li L; Deng W; Song J; Ding W; Zhao QF; Peng C; Song WW; Tang GL; Liu W J Bacteriol; 2008 Jan; 190(1):251-63. PubMed ID: 17981978 [TBL] [Abstract][Full Text] [Related]
8. Progress in the Total Synthesis of Antitumor Tetrahydroisoquinoline Alkaloids. Gao Y; Tu N; Liu X; Lu K; Chen S; Guo J Chem Biodivers; 2023 May; 20(5):e202300172. PubMed ID: 36939065 [TBL] [Abstract][Full Text] [Related]
9. Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. Rath CM; Janto B; Earl J; Ahmed A; Hu FZ; Hiller L; Dahlgren M; Kreft R; Yu F; Wolff JJ; Kweon HK; Christiansen MA; Håkansson K; Williams RM; Ehrlich GD; Sherman DH ACS Chem Biol; 2011 Nov; 6(11):1244-56. PubMed ID: 21875091 [TBL] [Abstract][Full Text] [Related]
11. Perquinolines A-C: Unprecedented Bacterial Tetrahydroisoquinolines Involving an Intriguing Biosynthesis. Rebets Y; Nadmid S; Paulus C; Dahlem C; Herrmann J; Hübner H; Rückert C; Kiemer AK; Gmeiner P; Kalinowski J; Müller R; Luzhetskyy A Angew Chem Int Ed Engl; 2019 Sep; 58(37):12930-12934. PubMed ID: 31310031 [TBL] [Abstract][Full Text] [Related]
12. Total synthesis of alkaloids using both chemical and biochemical methods. Tanifuji R; Minami A; Oguri H; Oikawa H Nat Prod Rep; 2020 Aug; 37(8):1098-1121. PubMed ID: 32141467 [TBL] [Abstract][Full Text] [Related]
13. Naphthyridinomycin biosynthesis revealing the use of leader peptide to guide nonribosomal peptide assembly. Pu JY; Peng C; Tang MC; Zhang Y; Guo JP; Song LQ; Hua Q; Tang GL Org Lett; 2013 Jul; 15(14):3674-7. PubMed ID: 23841701 [TBL] [Abstract][Full Text] [Related]
14. Evolution of a Synthetic Strategy toward the Syntheses of Bis-tetrahydroisoquinoline Alkaloids. Ngamnithiporn A; Welin ER; Pototschnig G; Stoltz BM Acc Chem Res; 2024 Jul; 57(13):1870-1884. PubMed ID: 38874438 [TBL] [Abstract][Full Text] [Related]
15. Biosynthesis of 3-hydroxy-5-methyl-o-methyltyrosine in the saframycin/ safracin biosynthetic pathway. Fu CY; Tang MC; Peng C; Li L; He YL; Liu W; Tang GL J Microbiol Biotechnol; 2009 May; 19(5):439-46. PubMed ID: 19494690 [TBL] [Abstract][Full Text] [Related]
16. Recent Advances in the Total Synthesis of the Tetrahydroisoquinoline Alkaloids (2002-2020). Kim AN; Ngamnithiporn A; Du E; Stoltz BM Chem Rev; 2023 Aug; 123(15):9447-9496. PubMed ID: 37429001 [TBL] [Abstract][Full Text] [Related]
17. Nature Builds Macrocycles and Heterocycles into Its Antimicrobial Frameworks: Deciphering Biosynthetic Strategy. Walsh CT ACS Infect Dis; 2018 Sep; 4(9):1283-1299. PubMed ID: 29993235 [TBL] [Abstract][Full Text] [Related]
18. Recent advances in the synthesis and activity of analogues of bistetrahydroisoquinoline alkaloids as antitumor agents. Guo J Eur J Med Chem; 2023 Dec; 262():115917. PubMed ID: 37925762 [TBL] [Abstract][Full Text] [Related]
19. The Pictet-Spengler mechanism involved in the biosynthesis of tetrahydroisoquinoline antitumor antibiotics: a novel function for a nonribosomal peptide synthetase. Koketsu K; Minami A; Watanabe K; Oguri H; Oikawa H Methods Enzymol; 2012; 516():79-98. PubMed ID: 23034225 [TBL] [Abstract][Full Text] [Related]
20. Biosynthesis of the uridine-derived nucleoside antibiotic A-94964: identification and characterization of the biosynthetic gene cluster provide insight into the biosynthetic pathway. Shiraishi T; Nishiyama M; Kuzuyama T Org Biomol Chem; 2019 Jan; 17(3):461-466. PubMed ID: 30570639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]