These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26456553)

  • 1. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser.
    Kozub JA; Shen JH; Joos KM; Prasad R; Hutson MS
    J Biomed Opt; 2015 Oct; 20(10):105004. PubMed ID: 26456553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optic nerve sheath fenestration using a Raman-shifted alexandrite laser.
    Kozub J; Shen JH; Joos KM; Prasad R; Hutson MS
    Lasers Surg Med; 2016 Mar; 48(3):270-80. PubMed ID: 27020001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-µm wavelength range.
    Kozub J; Ivanov B; Jayasinghe A; Prasad R; Shen J; Klosner M; Heller D; Mendenhall M; Piston DW; Joos K; Hutson MS
    Biomed Opt Express; 2011 Apr; 2(5):1275-81. PubMed ID: 21559139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL).
    Mackanos MA; Simanovskii D; Joos KM; Schwettman HA; Jansen ED
    Lasers Surg Med; 2007 Mar; 39(3):230-6. PubMed ID: 17304561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation.
    Li Z; Shen JH; Kozub JA; Prasad R; Lu P; Joos KM
    Lasers Surg Med; 2014 Mar; 46(3):193-202. PubMed ID: 24648326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea.
    Hutson MS; Ivanov B; Jayasinghe A; Adunas G; Xiao Y; Guo M; Kozub J
    Opt Express; 2009 Jun; 17(12):9840-50. PubMed ID: 19506634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelength-dependent collagen fragmentation during mid-IR laser ablation.
    Xiao Y; Guo M; Parker K; Hutson MS
    Biophys J; 2006 Aug; 91(4):1424-32. PubMed ID: 16714345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser.
    Lin T; Aoki A; Saito N; Yumoto M; Nakajima S; Nagasaka K; Ichinose S; Mizutani K; Wada S; Izumi Y
    Lasers Surg Med; 2016 Dec; 48(10):965-977. PubMed ID: 27020165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared laser surgery of the cornea. Studies with a Raman-shifted neodymium:YAG laser at 2.80 and 2.92 micron.
    Stern D; Puliafito CA; Dobi ET; Reidy WT
    Ophthalmology; 1988 Oct; 95(10):1434-41. PubMed ID: 3226691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of skin lesions produced by focused, tunable, mid-infrared chalcogenide laser radiation.
    Evers M; Ha L; Casper M; Welford D; Kositratna G; Birngruber R; Manstein D
    Lasers Surg Med; 2018 Sep; 50(9):961-972. PubMed ID: 29799127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment.
    Miller J; Yu XB; Yu PK; Cringle SJ; Yu DY
    Appl Opt; 2011 Feb; 50(6):876-85. PubMed ID: 21343967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of corneal ablation with picosecond laser pulses at 211 nm and 263 nm.
    Hu XH; Juhasz T
    Lasers Surg Med; 1996; 18(4):373-80. PubMed ID: 8732576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal load of laser aperture masks in nonmechanical trephination for penetrating keratoplasty with the Er:YAG laser: comparison between stainless steel and ceramic masks.
    Langenbucher A; Küchle M; Seitz B; Kus MM; Behrens A; Weimel E; Naumann GO
    Graefes Arch Clin Exp Ophthalmol; 2000 Apr; 238(4):339-45. PubMed ID: 10853934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mid-infrared laser ablation of the cornea: a comparative study.
    Ren Q; Venugopalan V; Schomacker K; Deutsch TF; Flotte TJ; Puliafito CA; Birngruber R
    Lasers Surg Med; 1992; 12(3):274-81. PubMed ID: 1508021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ablation-cooled material removal with ultrafast bursts of pulses.
    Kerse C; Kalaycıoğlu H; Elahi P; Çetin B; Kesim DK; Akçaalan Ö; Yavaş S; Aşık MD; Öktem B; Hoogland H; Holzwarth R; Ilday FÖ
    Nature; 2016 Sep; 537(7618):84-88. PubMed ID: 27409814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects.
    Blackmon RL; Irby PB; Fried NM
    J Biomed Opt; 2011 Jul; 16(7):071403. PubMed ID: 21806249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft and hard tissue ablation with short-pulse high peak power and continuous thulium-silica fibre lasers.
    El-Sherif AF; King TA
    Lasers Med Sci; 2003; 18(3):139-47. PubMed ID: 14505197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Q-switched erbium:YAG laser corneal trephination: thermal damage in corneal stroma and cut regularity of nonmechanical Q-switched erbium:YAG laser corneal trephination for penetrating keratoplasty.
    Stojkovic M; Seitz B; Langenbucher A; Viestenz A; Viestenz A; Hofmann-Rummelt C; Schlötzer-Schrehardt U; Küchle M; Naumann GO
    Cornea; 2004 Jan; 23(1):50-60. PubMed ID: 14701958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corneal ablations produced by the neodymium doped yttrium-lithium-fluoride picosecond laser.
    Brown DB; O'Brien WJ; Schultz RO
    Cornea; 1994 Nov; 13(6):471-8. PubMed ID: 7842703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoablation of gelatin with the free-electron laser between 2.7 and 6.7 microns.
    Jean B; Bende T
    J Refract Corneal Surg; 1994; 10(4):433-8. PubMed ID: 7528615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.