These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26456603)

  • 21. Sulfate-accelerated photochemical oxidation of arsenopyrite in acidic systems under oxic conditions: Formation and function of schwertmannite.
    Hong J; Liu L; Zhang Z; Xia X; Yang L; Ning Z; Liu C; Qiu G
    J Hazard Mater; 2022 Jul; 433():128716. PubMed ID: 35358816
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TiO2-catalyzed photooxidation of arsenite to arsenate in aqueous samples.
    Bissen M; Vieillard-Baron MM; Schindelin AJ; Frimmel FH
    Chemosphere; 2001 Aug; 44(4):751-7. PubMed ID: 11482665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced Arsenate Immobilization by Kaolinite via Heterogeneous Pathways during Ferrous Iron Oxidation.
    Wang X; Pu S; Ding J; Chen J; Liao P; Zhong D; Tsang DCW; Crittenden JC; Wang L
    Environ Sci Technol; 2024 Jul; 58(27):12123-12134. PubMed ID: 38934384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The key roles of Fe oxyhydroxides and humic substances during the transformation of exogenous arsenic in a redox-alternating acidic paddy soil.
    Hong Z; Hu S; Yang Y; Deng Z; Li X; Liu T; Li F
    Water Res; 2023 Aug; 242():120286. PubMed ID: 37399690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Desorption kinetics of arsenate from kaolinite as influenced by pH.
    Quaghebeur M; Rate A; Rengel Z; Hinz C
    J Environ Qual; 2005; 34(2):479-86. PubMed ID: 15758100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.
    Hall SJ; Silver WL
    Glob Chang Biol; 2013 Sep; 19(9):2804-13. PubMed ID: 23606589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential for microbially mediated redox transformations and mobilization of arsenic in uncontaminated soils.
    Yamamura S; Watanabe M; Yamamoto N; Sei K; Ike M
    Chemosphere; 2009 Sep; 77(2):169-74. PubMed ID: 19716583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diel cycles of arsenic speciation due to photooxidation in acid mine drainage from the Iberian Pyrite Belt (Sw Spain).
    Sarmiento AM; Oliveira V; Gómez-Ariza JL; Nieto JM; Sánchez-Rodas D
    Chemosphere; 2007 Jan; 66(4):677-83. PubMed ID: 16963107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arsenite oxidation initiated by the UV photolysis of nitrite and nitrate.
    Kim DH; Lee J; Ryu J; Kim K; Choi W
    Environ Sci Technol; 2014 Apr; 48(7):4030-7. PubMed ID: 24617811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative study of the photooxidation of arsenite mediated by dissolved and mineral-associated humic acid under light irradiation.
    Wang X; Pu L; Sun Z; Fang G; Wang Y; Gu C; Gao J
    J Hazard Mater; 2024 Jan; 462():132759. PubMed ID: 37832435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption and desorption of arsenic on an oxisol and its constituents.
    Ladeira AC; Ciminelli VS
    Water Res; 2004 Apr; 38(8):2087-94. PubMed ID: 15087189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redox reactions in the Fe-As-O2 system.
    Johnston RB; Singer PC
    Chemosphere; 2007 Sep; 69(4):517-25. PubMed ID: 17521697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photooxidation-induced changes in optical, electrochemical, and photochemical properties of humic substances.
    Sharpless CM; Aeschbacher M; Page SE; Wenk J; Sander M; McNeill K
    Environ Sci Technol; 2014; 48(5):2688-96. PubMed ID: 24383955
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid.
    Wang S; Mulligan CN
    Chemosphere; 2009 Jan; 74(2):274-9. PubMed ID: 18977015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arsenic and chromium speciation in an urban contaminated soil.
    Landrot G; Tappero R; Webb SM; Sparks DL
    Chemosphere; 2012 Aug; 88(10):1196-201. PubMed ID: 22520924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photochemical formation of hydroxyl radicals catalyzed by montmorillonite.
    Wu F; Li J; Peng Z; Deng N
    Chemosphere; 2008 Jun; 72(3):407-13. PubMed ID: 18384836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system.
    Zhou L; Zheng W; Ji Y; Zhang J; Zeng C; Zhang Y; Wang Q; Yang X
    J Hazard Mater; 2013 Dec; 263 Pt 2():422-30. PubMed ID: 24220194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron(III)-induced photooxidation of arsenite in the presence of carboxylic acids and phenols as model compounds of natural organic matter.
    Huang X; Peng Y; Xu J; Wu F; Mailhot G
    Chemosphere; 2021 Jan; 263():128142. PubMed ID: 33297130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transformation of roxarsone during UV disinfection in the presence of ferric ions.
    Chen Y; Lin C; Zhou Y; Long L; Li L; Tang M; Liu Z; Pozdnyakov IP; Huang LZ
    Chemosphere; 2019 Oct; 233():431-439. PubMed ID: 31176907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.