These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26456617)

  • 1. SERS detection of arsenic in water: A review.
    Hao J; Han MJ; Han S; Meng X; Su TL; Wang QK
    J Environ Sci (China); 2015 Oct; 36():152-62. PubMed ID: 26456617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor.
    Du J; Cui J; Jing C
    Chem Commun (Camb); 2014 Jan; 50(3):347-9. PubMed ID: 24244939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic Speciation on Silver Nanofilms by Surface-Enhanced Raman Spectroscopy.
    Yang M; Liamtsau V; Fan C; Sylvers KL; McGoron AJ; Liu G; Fu F; Cai Y
    Anal Chem; 2019 Jul; 91(13):8280-8288. PubMed ID: 31199622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water.
    Mulvihill M; Tao A; Benjauthrit K; Arnold J; Yang P
    Angew Chem Int Ed Engl; 2008; 47(34):6456-60. PubMed ID: 18618882
    [No Abstract]   [Full Text] [Related]  

  • 5. Speciation and evaluation of Arsenic in surface water and groundwater samples: a multivariate case study.
    Ahmed Baig J; Gul Kazi T; Qadir Shah A; Abbas Kandhro G; Imran Afridi H; Balal Arain M; Khan Jamali M; Jalbani N
    Ecotoxicol Environ Saf; 2010 Jul; 73(5):914-23. PubMed ID: 20363500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of metronidazole and ronidazole from environmental samples by surface enhanced Raman spectroscopy.
    Han C; Chen J; Wu X; Huang YW; Zhao Y
    Talanta; 2014 Oct; 128():293-8. PubMed ID: 25059163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples.
    Ruan C; Luo W; Wang W; Gu B
    Anal Chim Acta; 2007 Dec; 605(1):80-6. PubMed ID: 18022414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time analysis of diaquat dibromide monohydrate in water with a SERS-based integrated microdroplet sensor.
    Gao R; Choi N; Chang SI; Lee EK; Choo J
    Nanoscale; 2014 Aug; 6(15):8781-6. PubMed ID: 24954446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants.
    Song D; Yang R; Long F; Zhu A
    J Environ Sci (China); 2019 Jun; 80():14-34. PubMed ID: 30952332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtrace metalloids speciation in lakes water samples (Poland).
    Niedzielski P
    Environ Monit Assess; 2006 Jul; 118(1-3):231-46. PubMed ID: 16897544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of geogenic arsenic in hydrologic systems: controls and challenges.
    Mukherjee A; Bhattacharya P; Savage K; Foster A; Bundschuh J
    J Contam Hydrol; 2008 Jul; 99(1-4):1-7. PubMed ID: 18514970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retting of jute grown in arsenic contaminated area and consequent arsenic pollution in surface water bodies.
    Majumder A; Bairagya MD; Basu B; Gupta PC; Sarkar S
    Sci Total Environ; 2013 Jan; 442():247-54. PubMed ID: 23178784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes.
    Li F; Wang J; Lai Y; Wu C; Sun S; He Y; Ma H
    Biosens Bioelectron; 2013 Jan; 39(1):82-7. PubMed ID: 22840330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry.
    Çiftçi TD; Henden E
    Bull Environ Contam Toxicol; 2016 Aug; 97(2):272-8. PubMed ID: 27236436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlations between arsenic in Maine groundwater and microbial populations as determined by fluorescence in situ hybridization.
    Weldon JM; MacRae JD
    Chemosphere; 2006 Apr; 63(3):440-8. PubMed ID: 16310822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated portable Raman sensor with nanofabricated gold bowtie array substrates for energetics detection.
    Hatab NA; Rouleau CM; Retterer ST; Eres G; Hatzinger PB; Gu B
    Analyst; 2011 Apr; 136(8):1697-702. PubMed ID: 21373687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies.
    Beak DG; Wilkin RT
    J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic speciation in river and estuarine waters from southwest Spain.
    Sánchez-Rodas D; Luis Gómez-Ariza J; Giráldez I; Velasco A; Morales E
    Sci Total Environ; 2005 Jun; 345(1-3):207-17. PubMed ID: 15919540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating mobilization and transport of arsenic in sediments and groundwaters of Aquia aquifer, Maryland, USA.
    Haque S; Ji J; Johannesson KH
    J Contam Hydrol; 2008 Jul; 99(1-4):68-84. PubMed ID: 18579256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic speciation of geothermal waters in New Zealand.
    Lord G; Kim N; Ward NI
    J Environ Monit; 2012 Dec; 14(12):3192-201. PubMed ID: 23147530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.