BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1655 related articles for article (PubMed ID: 26456916)

  • 1. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.
    Suk JS; Xu Q; Kim N; Hanes J; Ensign LM
    Adv Drug Deliv Rev; 2016 Apr; 99(Pt A):28-51. PubMed ID: 26456916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Well-Characterized PEG-Coated Nanoparticles for Elucidating Biological Barriers to Drug Delivery.
    Yang Q; Lai SK
    Methods Mol Biol; 2017; 1530():125-137. PubMed ID: 28150200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Surface Polyethylene Glycol (PEG) Density on Biodegradable Nanoparticle Transport in Mucus ex Vivo and Distribution in Vivo.
    Xu Q; Ensign LM; Boylan NJ; Schön A; Gong X; Yang JC; Lamb NW; Cai S; Yu T; Freire E; Hanes J
    ACS Nano; 2015 Sep; 9(9):9217-27. PubMed ID: 26301576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles with dense poly(ethylene glycol) coatings with near neutral charge are maximally transported across lymphatics and to the lymph nodes.
    McCright J; Skeen C; Yarmovsky J; Maisel K
    Acta Biomater; 2022 Jun; 145():146-158. PubMed ID: 35381399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEGylation for enhancing nanoparticle diffusion in mucus.
    Huckaby JT; Lai SK
    Adv Drug Deliv Rev; 2018 Jan; 124():125-139. PubMed ID: 28882703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achievements and Bottlenecks of PEGylation in Nano-delivery Systems.
    Shen R; Yuan H
    Curr Med Chem; 2023; 30(12):1386-1405. PubMed ID: 36177626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stealth CD44-targeted hyaluronic acid supramolecular nanoassemblies for doxorubicin delivery: probing the effect of uncovalent pegylation degree on cellular uptake and blood long circulation.
    Han X; Li Z; Sun J; Luo C; Li L; Liu Y; Du Y; Qiu S; Ai X; Wu C; Lian H; He Z
    J Control Release; 2015 Jan; 197():29-40. PubMed ID: 25449802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors.
    Adumeau L; Genevois C; Roudier L; Schatz C; Couillaud F; Mornet S
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1587-1596. PubMed ID: 28179102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of long-circulating cationic nanoparticle formulations consisting of a two-stage PEGylation step for the delivery of siRNA in a breast cancer tumor model.
    Ho EA; Osooly M; Strutt D; Masin D; Yang Y; Yan H; Bally M
    J Pharm Sci; 2013 Jan; 102(1):227-36. PubMed ID: 23132529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in stealth coating of nanoparticle drug delivery systems.
    Amoozgar Z; Yeo Y
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(2):219-33. PubMed ID: 22231928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 'Stealth' lipid-based formulations: poly(ethylene glycol)-mediated digestion inhibition improves oral bioavailability of a model poorly water soluble drug.
    Feeney OM; Williams HD; Pouton CW; Porter CJ
    J Control Release; 2014 Oct; 192():219-27. PubMed ID: 25058571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-PEG antibodies alter the mobility and biodistribution of densely PEGylated nanoparticles in mucus.
    Henry CE; Wang YY; Yang Q; Hoang T; Chattopadhyay S; Hoen T; Ensign LM; Nunn KL; Schroeder H; McCallen J; Moench T; Cone R; Roffler SR; Lai SK
    Acta Biomater; 2016 Oct; 43():61-70. PubMed ID: 27424083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma.
    Hatakeyama H; Akita H; Harashima H
    Adv Drug Deliv Rev; 2011 Mar; 63(3):152-60. PubMed ID: 20840859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PEGylated nanocarriers for systemic delivery.
    Jain NK; Nahar M
    Methods Mol Biol; 2010; 624():221-34. PubMed ID: 20217599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
    Hadinoto K; Sundaresan A; Cheow WS
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cleavable PEGylation: a strategy for overcoming the "PEG dilemma" in efficient drug delivery.
    Fang Y; Xue J; Gao S; Lu A; Yang D; Jiang H; He Y; Shi K
    Drug Deliv; 2017 Dec; 24(sup1):22-32. PubMed ID: 29069920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sheddable coatings for long-circulating nanoparticles.
    Romberg B; Hennink WE; Storm G
    Pharm Res; 2008 Jan; 25(1):55-71. PubMed ID: 17551809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serum albumin 'camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics.
    Pitek AS; Jameson SA; Veliz FA; Shukla S; Steinmetz NF
    Biomaterials; 2016 May; 89():89-97. PubMed ID: 26950168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Modular PEG Incorporation Strategies for Stabilization of Peptide-siRNA Nanocomplexes.
    Lo JH; Kwon EJ; Zhang AQ; Singhal P; Bhatia SN
    Bioconjug Chem; 2016 Oct; 27(10):2323-2331. PubMed ID: 27583545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-triggered PEGylated pDNA-nanoparticles for controlled release of pDNA in tumors.
    Yingyuad P; Mével M; Prata C; Furegati S; Kontogiorgis C; Thanou M; Miller AD
    Bioconjug Chem; 2013 Mar; 24(3):343-62. PubMed ID: 23305338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 83.