BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26457526)

  • 21. Ambient temperature structure of phosphoketolase from Bifidobacterium longum determined by serial femtosecond X-ray crystallography.
    Nakata K; Kashiwagi T; Kunishima N; Naitow H; Matsuura Y; Miyano H; Mizukoshi T; Tono K; Yabashi M; Nango E; Iwata S
    Acta Crystallogr D Struct Biol; 2023 Apr; 79(Pt 4):290-303. PubMed ID: 36974963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional flexibility of the transketolase molecule.
    Kochetov GA
    Biochemistry (Mosc); 2001 Oct; 66(10):1077-85. PubMed ID: 11736629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homology modeling of human transketolase: description of critical sites useful for drug design and study of the cofactor binding mode.
    Obiol-Pardo C; Rubio-Martinez J
    J Mol Graph Model; 2009 Feb; 27(6):723-34. PubMed ID: 19111488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate inhibition of transketolase.
    Solovjeva ON; Kovina MV; Kochetov GA
    Biochim Biophys Acta; 2016 Mar; 1864(3):280-282. PubMed ID: 26708478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal versus solution structures of thiamine diphosphate-dependent enzymes.
    Svergun DI; Petoukhov MV; Koch MH; König S
    J Biol Chem; 2000 Jan; 275(1):297-302. PubMed ID: 10617618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of donor substrate on kinetic parameters of thiamine diphosphate binding to transketolase.
    Ospanov RV; Kochetov GA; Kurganov BI
    Biochemistry (Mosc); 2007 Jan; 72(1):84-92. PubMed ID: 17309441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The refined structures of a stabilized mutant and of wild-type pyruvate oxidase from Lactobacillus plantarum.
    Muller YA; Schumacher G; Rudolph R; Schulz GE
    J Mol Biol; 1994 Apr; 237(3):315-35. PubMed ID: 8145244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.
    Lobley CM; Aller P; Douangamath A; Reddivari Y; Bumann M; Bird LE; Nettleship JE; Brandao-Neto J; Owens RJ; O'Toole PW; Walsh MA
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Dec; 68(Pt 12):1427-33. PubMed ID: 23192019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular evolutionary analysis of the thiamine-diphosphate-dependent enzyme, transketolase.
    Schenk G; Layfield R; Candy JM; Duggleby RG; Nixon PF
    J Mol Evol; 1997 May; 44(5):552-72. PubMed ID: 9115179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A transketolase assembly defect in a Wernicke-Korsakoff syndrome patient.
    Wang JJ; Martin PR; Singleton CK
    Alcohol Clin Exp Res; 1997 Jun; 21(4):576-80. PubMed ID: 9194907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.
    Nauton L; Hélaine V; Théry V; Hecquet L
    Biochemistry; 2016 Apr; 55(14):2144-52. PubMed ID: 26998737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexibility of thiamine diphosphate revealed by kinetic crystallographic studies of the reaction of pyruvate-ferredoxin oxidoreductase with pyruvate.
    Cavazza C; Contreras-Martel C; Pieulle L; Chabrière E; Hatchikian EC; Fontecilla-Camps JC
    Structure; 2006 Feb; 14(2):217-24. PubMed ID: 16472741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The nature of binding between the coenzyme and protein in transketolase from the swine liver].
    Tikhomirova NK; Filippov PP
    Biokhimiia; 1985 Oct; 50(10):1653-8. PubMed ID: 4074776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. QM/MM Study of Human Transketolase: Thiamine Diphosphate Activation Mechanism and Complete Catalytic Cycle.
    Nauton L; Hecquet L; Théry V
    J Chem Inf Model; 2021 Jul; 61(7):3502-3515. PubMed ID: 34161071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and function of the transketolase from Mycobacterium tuberculosis and comparison with the human enzyme.
    Fullam E; Pojer F; Bergfors T; Jones TA; Cole ST
    Open Biol; 2012 Jan; 2(1):110026. PubMed ID: 22645655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multireplicon genome architecture of Lactobacillus salivarius.
    Claesson MJ; Li Y; Leahy S; Canchaya C; van Pijkeren JP; Cerdeño-Tárraga AM; Parkhill J; Flynn S; O'Sullivan GC; Collins JK; Higgins D; Shanahan F; Fitzgerald GF; van Sinderen D; O'Toole PW
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6718-23. PubMed ID: 16617113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Metabolism of transketolase coenzyme in the rat liver].
    Gorbach ZV; Kubyshin VL; Maglysh SS; Zabrodskaia SV
    Biokhimiia; 1986 Jul; 51(7):1093-9. PubMed ID: 3730445
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus.
    Markert B; Stolzenberger J; Brautaset T; Wendisch VF
    BMC Microbiol; 2014 Jan; 14():7. PubMed ID: 24405865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Mesomeric Effect of Thiazolium on non-Kekulé Diradicals in Pichia stipitis Transketolase.
    Hsu NS; Wang YL; Lin KH; Chang CF; Lyu SY; Hsu LJ; Liu YC; Chang CY; Wu CJ; Li TL
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1802-1807. PubMed ID: 29243887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of the thiamine nutritional status. An evaluation of erythrocyte transketolase activity, the stimulated erythrocyte transketolase activity, and the thiamine pyrophosphate effect.
    Graudal N; Torp-Pedersen K; Hanel H; Kristensen M; Thomsen AC; Nørgård G
    Int J Vitam Nutr Res; 1985; 55(4):399-403. PubMed ID: 4086209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.