These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26457645)

  • 1. Electrocatalytic Amplification of Single Nanoparticle Collisions Using DNA-Modified Surfaces.
    Alligrant TM; Dasari R; Stevenson KJ; Crooks RM
    Langmuir; 2015 Oct; 31(42):11724-33. PubMed ID: 26457645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalytic amplification of DNA-modified nanoparticle collisions
    Castañeda AD; Robinson DA; Stevenson KJ; Crooks RM
    Chem Sci; 2016 Oct; 7(10):6450-6457. PubMed ID: 28451102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single nanoparticle collisions at microfluidic microband electrodes: the effect of electrode material and mass transfer.
    Alligrant TM; Anderson MJ; Dasari R; Stevenson KJ; Crooks RM
    Langmuir; 2014 Nov; 30(44):13462-9. PubMed ID: 25360826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic Collision Electrochemistry from Single Pt Nanoparticles: Electrocatalytic Amplification and MicroRNA Sensing.
    Qiu X; Tang H; Dong J; Wang C; Li Y
    Anal Chem; 2022 Jun; 94(23):8202-8208. PubMed ID: 35642339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of Single Pt Nanoparticle Collisions: Enhanced Electrocatalytic Activity on a Pd Ultramicroelectrode.
    Shin C; Park TE; Park C; Kwon SJ
    Chemphyschem; 2016 Jun; 17(11):1637-41. PubMed ID: 26955784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response.
    Kwon SJ; Bard AJ
    J Am Chem Soc; 2012 Jul; 134(26):10777-9. PubMed ID: 22702801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of microRNA by Electrocatalytic Amplification: A General Approach for Single-Particle Biosensing.
    Castañeda AD; Brenes NJ; Kondajji A; Crooks RM
    J Am Chem Soc; 2017 Jun; 139(22):7657-7664. PubMed ID: 28537750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles.
    Dasari R; Robinson DA; Stevenson KJ
    J Am Chem Soc; 2013 Jan; 135(2):570-3. PubMed ID: 23270578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical detection of individual DNA hybridization events.
    Alligrant TM; Nettleton EG; Crooks RM
    Lab Chip; 2013 Feb; 13(3):349-54. PubMed ID: 23212121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalytic amplification of nanoparticle collisions at electrodes modified with polyelectrolyte multilayer films.
    Castañeda AD; Alligrant TM; Loussaert JA; Crooks RM
    Langmuir; 2015 Jan; 31(2):876-85. PubMed ID: 25568965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High sensitivity DNA detection based on regioselectively decorated electrocatalytic nanoparticles.
    Spain E; Brennan E; McArdle H; Keyes TE; Forster RJ
    Anal Chem; 2012 Aug; 84(15):6471-6. PubMed ID: 22747434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled synthesis of Pt nanoparticles array through electroreduction of cisplatin bound at nucleobases terminated surface and application into H2O2 sensing.
    Ji S; Guo Q; Yue Q; Wang L; Wang H; Zhao J; Dong R; Liu J; Jia J
    Biosens Bioelectron; 2011 Jan; 26(5):2067-73. PubMed ID: 20888213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current transients in single nanoparticle collision events.
    Xiao X; Fan FR; Zhou J; Bard AJ
    J Am Chem Soc; 2008 Dec; 130(49):16669-77. PubMed ID: 19554731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical responses and electrocatalysis at single au nanoparticles.
    Li Y; Cox JT; Zhang B
    J Am Chem Soc; 2010 Mar; 132(9):3047-54. PubMed ID: 20148588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High performance of electrocatalytic oxidation and determination of hydrazine based on Pt nanoparticles/TiO2 nanosheets.
    Yue X; Yang W; Xu M; Liu X; Jia J
    Talanta; 2015 Nov; 144():1296-300. PubMed ID: 26452961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the redox indicator reaction on single-nanoparticle collisions at mercury- and bismuth-modified Pt ultramicroelectrodes.
    Dasari R; Walther B; Robinson DA; Stevenson KJ
    Langmuir; 2013 Dec; 29(48):15100-6. PubMed ID: 24188022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of electrochemical DNA biosensor based on gold nanoparticle modified electrode by electroless deposition.
    Liu S; Liu J; Wang L; Zhao F
    Bioelectrochemistry; 2010 Aug; 79(1):37-42. PubMed ID: 19914151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wireless electrochemical DNA microarray sensor.
    Chow KF; Mavré F; Crooks RM
    J Am Chem Soc; 2008 Jun; 130(24):7544-5. PubMed ID: 18505258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Nanoparticle Electrochemistry through Immobilization and Collision.
    Anderson TJ; Zhang B
    Acc Chem Res; 2016 Nov; 49(11):2625-2631. PubMed ID: 27730817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocatalyst-based assay using DNA-conjugated Au nanoparticles for electrochemical DNA detection.
    Selvaraju T; Das J; Jo K; Kwon K; Huh CH; Kim TK; Yang H
    Langmuir; 2008 Sep; 24(17):9883-8. PubMed ID: 18690735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.