These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 26457735)
1. A simple and sensitive fluorimetric aptasensor for the ultrasensitive detection of arsenic(III) based on cysteamine stabilized CdTe/ZnS quantum dots aggregation. Ensafi AA; Kazemifard N; Rezaei B Biosens Bioelectron; 2016 Mar; 77():499-504. PubMed ID: 26457735 [TBL] [Abstract][Full Text] [Related]
2. Fluorescent probe for detection of Cu2+ using core-shell CdTe/ZnS quantum dots. Bian W; Wang F; Zhang H; Zhang L; Wang L; Shuang S Luminescence; 2015 Nov; 30(7):1064-70. PubMed ID: 25703392 [TBL] [Abstract][Full Text] [Related]
3. Imprinting of molecular recognition sites combined with π-donor-acceptor interactions using bis-aniline-crosslinked Au-CdSe/ZnS nanoparticles array on electrodes: Development of electrochemiluminescence sensor for the ultrasensitive and selective detection of 2-methyl-4-chlorophenoxyacetic acid. Yang Y; Fang G; Wang X; Liu G; Wang S Biosens Bioelectron; 2016 Mar; 77():1134-43. PubMed ID: 26569444 [TBL] [Abstract][Full Text] [Related]
4. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Arvand M; Mirroshandel AA Biosens Bioelectron; 2017 Oct; 96():324-331. PubMed ID: 28525850 [TBL] [Abstract][Full Text] [Related]
5. A highly selective and simple fluorescent sensor for mercury (II) ion detection based on cysteamine-capped CdTe quantum dots synthesized by the reflux method. Ding X; Qu L; Yang R; Zhou Y; Li J Luminescence; 2015 Jun; 30(4):465-71. PubMed ID: 25263990 [TBL] [Abstract][Full Text] [Related]
6. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Zhang W; Chen G; Wang J; Ye BC; Zhong X Inorg Chem; 2009 Oct; 48(20):9723-31. PubMed ID: 19772326 [TBL] [Abstract][Full Text] [Related]
7. Ultraviolet radiation synthesis of water dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with high fluorescence strength and biocompatibility. Xu B; Cai B; Liu M; Fan H Nanotechnology; 2013 May; 24(20):205601. PubMed ID: 23598608 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence enhancement of glutathione capped CdTe/ZnS quantum dots by embedding into cationic starch for sensitive detection of rifampicin. Hooshyar Z; Bardajee GR Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():144-150. PubMed ID: 27639201 [TBL] [Abstract][Full Text] [Related]
9. Silver nanoparticles-enhanced time-resolved fluorescence sensor for VEGF(165) based on Mn-doped ZnS quantum dots. Zhu D; Li W; Wen HM; Yu S; Miao ZY; Kang A; Zhang A Biosens Bioelectron; 2015 Dec; 74():1053-60. PubMed ID: 26276542 [TBL] [Abstract][Full Text] [Related]
10. Facile synthesis and characterization of highly fluorescent and biocompatible N-acetyl-L-cysteine capped CdTe/CdS/ZnS core/shell/shell quantum dots in aqueous phase. Xiao Q; Huang S; Su W; Chan WH; Liu Y Nanotechnology; 2012 Dec; 23(49):495717. PubMed ID: 23165590 [TBL] [Abstract][Full Text] [Related]
11. A simple and rapid label-free fluorimetric biosensor for protamine detection based on glutathione-capped CdTe quantum dots aggregation. Ensafi AA; Kazemifard N; Rezaei B Biosens Bioelectron; 2015 Sep; 71():243-248. PubMed ID: 25912680 [TBL] [Abstract][Full Text] [Related]
12. CdTe/ZnS quantum dots as fluorescent probes for ammonium determination. Yi KY Luminescence; 2016 Jun; 31(4):952-7. PubMed ID: 26542194 [TBL] [Abstract][Full Text] [Related]
13. Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films. Ma Q; Cui H; Su X Biosens Bioelectron; 2009 Dec; 25(4):839-44. PubMed ID: 19765971 [TBL] [Abstract][Full Text] [Related]
14. Ultrasensitive photoelectrochemical immunoassay for CA19-9 detection based on CdSe@ZnS quantum dots sensitized TiO2NWs/Au hybrid structure amplified by quenching effect of Ab2@V(2+) conjugates. Zhu H; Fan GC; Abdel-Halim ES; Zhang JR; Zhu JJ Biosens Bioelectron; 2016 Mar; 77():339-46. PubMed ID: 26433066 [TBL] [Abstract][Full Text] [Related]
15. Ultrasensitive Pb2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Wang X; Guo X Analyst; 2009 Jul; 134(7):1348-54. PubMed ID: 19562200 [TBL] [Abstract][Full Text] [Related]
17. Efficient fluorescence resonance energy transfer between oppositely charged CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of glyphosate. Guo J; Zhang Y; Luo Y; Shen F; Sun C Talanta; 2014 Jul; 125():385-92. PubMed ID: 24840461 [TBL] [Abstract][Full Text] [Related]
18. CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization. Qiu Z; Shu J; He Y; Lin Z; Zhang K; Lv S; Tang D Biosens Bioelectron; 2017 Jan; 87():18-24. PubMed ID: 27504793 [TBL] [Abstract][Full Text] [Related]
19. A robust and fast bacteria counting method using CdSe/ZnS core/shell quantum dots as labels. Fu X; Huang K; Liu S J Microbiol Methods; 2009 Dec; 79(3):367-70. PubMed ID: 19799940 [TBL] [Abstract][Full Text] [Related]
20. Green Luminescent CdTe Quantum Dot Based Fluorescence Nano-Sensor for Sensitive Detection of Arsenic (III). Vaishanav SK; Korram J; Pradhan P; Chandraker K; Nagwanshi R; Ghosh KK; Satnami ML J Fluoresc; 2017 May; 27(3):781-789. PubMed ID: 28032282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]