These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 26457767)
1. Exclusive Stereocomplex Crystallization of Linear and Multiarm Star-Shaped High-Molecular-Weight Stereo Diblock Poly(lactic acid)s. Han L; Shan G; Bao Y; Pan P J Phys Chem B; 2015 Nov; 119(44):14270-9. PubMed ID: 26457767 [TBL] [Abstract][Full Text] [Related]
2. Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology. Bao J; Han L; Shan G; Bao Y; Pan P J Phys Chem B; 2015 Oct; 119(39):12689-98. PubMed ID: 26352621 [TBL] [Abstract][Full Text] [Related]
3. Homo- and Stereocomplex Crystallization of Star-Shaped Four-Armed Stereo Diblock Copolymers of Crystalline and Amorphous Poly(lactide)s: Effects of Incorporation and Position of Amorphous Blocks. Tsuji H; Ogawa M; Arakawa Y J Phys Chem B; 2016 Oct; 120(42):11052-11063. PubMed ID: 27700096 [TBL] [Abstract][Full Text] [Related]
4. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: molecular weight effects. Pan P; Han L; Bao J; Xie Q; Shan G; Bao Y J Phys Chem B; 2015 May; 119(21):6462-70. PubMed ID: 25940864 [TBL] [Abstract][Full Text] [Related]
5. Polymorphic Crystallization and Crystalline Reorganization of Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Mixture Influenced by Blending with Poly(vinylidene fluoride). Yu C; Han L; Bao J; Shan G; Bao Y; Pan P J Phys Chem B; 2016 Aug; 120(32):8046-54. PubMed ID: 27414064 [TBL] [Abstract][Full Text] [Related]
6. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt. Tsuji H; Tezuka Y Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428 [TBL] [Abstract][Full Text] [Related]
7. Stereocomplex Crystallization of Star-Shaped Four-Armed Stereo Diblock Poly(lactide) from the Melt: Effects of Incorporated Linear One-Armed Poly(l-lactide) or Poly(d-lactide). Tsuji H; Ozawa R; Arakawa Y J Phys Chem B; 2017 Oct; 121(42):9936-9946. PubMed ID: 28933867 [TBL] [Abstract][Full Text] [Related]
8. Crystallization and Alkaline Degradation Behaviors of Poly(l-Lactide)/4-Armed Poly(ε-Caprolactone)-Block-Poly(d-Lactide) Blends with Different Poly(d-Lactide) Block Lengths. Dai S; Wang M; Zhuang Z; Ning Z Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32992889 [TBL] [Abstract][Full Text] [Related]
9. Promoted formation of stereocomplex in enantiomeric poly(lactic acid)s induced by cellulose nanofibers. Ren Q; Wu M; Weng Z; Zhu X; Li W; Huang P; Wang L; Zheng W; Ohshima M Carbohydr Polym; 2022 Jan; 276():118800. PubMed ID: 34823806 [TBL] [Abstract][Full Text] [Related]
10. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator. Chang WW; Niu J; Peng H; Rong W Int J Biol Macromol; 2023 Dec; 253(Pt 5):127230. PubMed ID: 37797850 [TBL] [Abstract][Full Text] [Related]
11. Stereocomplex Crystallization of Linear Two-Armed Stereo Diblock Copolymers: Effects of Chain Directional Change, Coinitiator Moiety, and Terminal Groups. Tsuji H; Ogawa M; Arakawa Y J Phys Chem B; 2017 Mar; 121(12):2695-2702. PubMed ID: 28257209 [TBL] [Abstract][Full Text] [Related]
12. Effect of PDLA and Amide Compounds as Mixed Nucleating Agents on Crystallization Behaviors of Poly (l-lactic Acid). Khwanpipat T; Seadan M; Suttiruengwong S Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29976863 [TBL] [Abstract][Full Text] [Related]
13. Competitive Stereocomplexation and Homocrystallization Behaviors in the Poly(lactide) Blends of PLLA and PDLA-PEG-PDLA with Controlled Block Length. Jing Z; Shi X; Zhang G Polymers (Basel); 2017 Mar; 9(3):. PubMed ID: 30970786 [TBL] [Abstract][Full Text] [Related]
14. Relationship between the Stereocomplex Crystallization Behavior and Mechanical Properties of PLLA/PDLA Blends. Park HS; Hong CK Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34199577 [TBL] [Abstract][Full Text] [Related]
15. Tailor-Made Dispersion and Distribution of Stereocomplex Crystallites in Poly(l-lactide)/Elastomer Blends toward Largely Enhanced Crystallization Rate and Impact Toughness. Luo Y; Ju Y; Bai H; Liu Z; Zhang Q; Fu Q J Phys Chem B; 2017 Jun; 121(25):6271-6279. PubMed ID: 28587466 [TBL] [Abstract][Full Text] [Related]
16. Polymorphism of racemic poly(L-lactide)/poly(D-lactide) blend: effect of melt and cold crystallization. Bao RY; Yang W; Jiang WR; Liu ZY; Xie BH; Yang MB J Phys Chem B; 2013 Apr; 117(13):3667-74. PubMed ID: 23477609 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of high-performance poly(l-lactic acid)/lignin-graft-poly(d-lactic acid) stereocomplex films. Liu R; Dai L; Hu LQ; Zhou WQ; Si CL Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():397-403. PubMed ID: 28866180 [TBL] [Abstract][Full Text] [Related]
18. Competing Stereocomplexation and Homocrystallization of Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Mixture: Effects of Miscible Blending with Other Polymers. Bao J; Xue X; Li K; Chang X; Xie Q; Yu C; Pan P J Phys Chem B; 2017 Jul; 121(28):6934-6943. PubMed ID: 28635284 [TBL] [Abstract][Full Text] [Related]
19. Remarkably enhanced stereocomplex crystallization of high-molar-mass enantiomeric polylactide blends by adding double-grafted copolymers. Yuan L; Deng S; Wang Y; Xiu H; Zhang Q; Bai H Int J Biol Macromol; 2024 Feb; 258(Pt 1):128919. PubMed ID: 38134994 [TBL] [Abstract][Full Text] [Related]
20. Toward ultra-tough and heat-resistant biodegradable polylactide/core-shell rubber blends by regulating the distribution of rubber particles with stereocomplex crystallites. Liu H; Zhao Y; Zheng Y; Chen J; Wang J; Gao G; Bai D Int J Biol Macromol; 2023 Mar; 232():123422. PubMed ID: 36708887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]