These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2645782)

  • 1. Exercise and insulin stimulate skeletal muscle glucose transport through different mechanisms.
    Sternlicht E; Barnard RJ; Grimditch GK
    Am J Physiol; 1989 Feb; 256(2 Pt 1):E227-30. PubMed ID: 2645782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of insulin action on glucose transport in rat skeletal muscle.
    Sternlicht E; Barnard RJ; Grimditch GK
    Am J Physiol; 1988 May; 254(5 Pt 1):E633-8. PubMed ID: 3284385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta-adrenergic receptors are not responsible for exercise stimulation of glucose transport.
    Sternlicht E; Barnard RJ; Grimditch GK
    J Appl Physiol (1985); 1989 May; 66(5):2419-22. PubMed ID: 2545659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of streptozotocin-induced diabetes on glucose transport in skeletal muscle.
    Barnard RJ; Youngren JF; Kartel DS; Martin DA
    Endocrinology; 1990 Apr; 126(4):1921-6. PubMed ID: 2138534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose transport in skeletal muscle membrane vesicles from control and exercised rats.
    King PA; Hirshman MF; Horton ED; Horton ES
    Am J Physiol; 1989 Dec; 257(6 Pt 1):C1128-34. PubMed ID: 2610251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of training on insulin binding to rat skeletal muscle sarcolemmal vesicles.
    Grimditch GK; Barnard RJ; Kaplan SA; Sternlicht E
    Am J Physiol; 1986 May; 250(5 Pt 1):E570-5. PubMed ID: 3518488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise-stimulated glucose transport in skeletal muscle is nitric oxide dependent.
    Roberts CK; Barnard RJ; Scheck SH; Balon TW
    Am J Physiol; 1997 Jul; 273(1 Pt 1):E220-5. PubMed ID: 9252500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential mechanism of insulin action on glucose transport in the isolated rat diaphragm. Apparent translocation of intracellular transport units to the plasma membrane.
    Wardzala LJ; Jeanrenaud B
    J Biol Chem; 1981 Jul; 256(14):7090-3. PubMed ID: 6265437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of acute and chronic exercise on skeletal muscle glucose transport in aged rats.
    Youngren JF; Barnard RJ
    J Appl Physiol (1985); 1995 May; 78(5):1750-6. PubMed ID: 7649909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pioglitazone treatment for 7 days failed to correct the defect in glucose transport and glucose transporter translocation in obese Zucker rat (fa/fa) skeletal muscle plasma membranes.
    Hirshman MF; Fagnant PM; Horton ED; King PA; Horton ES
    Biochem Biophys Res Commun; 1995 Mar; 208(2):835-45. PubMed ID: 7695642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise modulates the insulin-induced translocation of glucose transporters in rat skeletal muscle.
    Douen AG; Ramlal T; Cartee GD; Klip A
    FEBS Lett; 1990 Feb; 261(2):256-60. PubMed ID: 2178971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise-induced increase in glucose transporters in plasma membranes of rat skeletal muscle.
    Douen AG; Ramlal T; Klip A; Young DA; Cartee GD; Holloszy JO
    Endocrinology; 1989 Jan; 124(1):449-54. PubMed ID: 2642418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise, unlike insulin, promotes glucose transporter translocation in obese Zucker rat muscle.
    King PA; Betts JJ; Horton ED; Horton ES
    Am J Physiol; 1993 Aug; 265(2 Pt 2):R447-52. PubMed ID: 8368400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose transporter number, activity, and isoform content in plasma membranes of red and white skeletal muscle.
    Goodyear LJ; Hirshman MF; Smith RJ; Horton ES
    Am J Physiol; 1991 Nov; 261(5 Pt 1):E556-61. PubMed ID: 1951679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fructose transport and GLUT-5 protein in human sarcolemmal vesicles.
    Kristiansen S; Darakhshan F; Richter EA; Hundal HS
    Am J Physiol; 1997 Sep; 273(3 Pt 1):E543-8. PubMed ID: 9316444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulin resistance in obese Zucker rat (fa/fa) skeletal muscle is associated with a failure of glucose transporter translocation.
    King PA; Horton ED; Hirshman MF; Horton ES
    J Clin Invest; 1992 Oct; 90(4):1568-75. PubMed ID: 1401086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversal of enhanced muscle glucose transport after exercise: roles of insulin and glucose.
    Gulve EA; Cartee GD; Zierath JR; Corpus VM; Holloszy JO
    Am J Physiol; 1990 Nov; 259(5 Pt 1):E685-91. PubMed ID: 2240207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle alpha-aminoisobutyric acid transport after exercise: enhanced stimulation by insulin.
    Zorzano A; Balon TW; Garetto LP; Goodman MN; Ruderman NB
    Am J Physiol; 1985 May; 248(5 Pt 1):E546-52. PubMed ID: 3887941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise-induced translocation of skeletal muscle glucose transporters.
    Goodyear LJ; Hirshman MF; Horton ES
    Am J Physiol; 1991 Dec; 261(6 Pt 1):E795-9. PubMed ID: 1662910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of diet on insulin binding and glucose transport in rat sarcolemmal vesicles.
    Grimditch GK; Barnard RJ; Sternlicht E; Whitson RH; Kaplan SA
    Am J Physiol; 1987 Mar; 252(3 Pt 1):E420-5. PubMed ID: 3548433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.