These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 26458008)
21. Distinguishing Galactomyces citri-aurantii from G. geotrichum and characterizing population structure of the two postharvest sour rot pathogens of fruit crops in California. McKay AH; Förster H; Adaskaveg JE Phytopathology; 2012 May; 102(5):528-38. PubMed ID: 22494250 [TBL] [Abstract][Full Text] [Related]
22. Influence of arginine on the biocontrol efficiency of Metschnikowia citriensis against Geotrichum citri-aurantii causing sour rot of postharvest citrus fruit. Wang S; Zhang H; Qi T; Deng L; Yi L; Zeng K Food Microbiol; 2022 Feb; 101():103888. PubMed ID: 34579848 [TBL] [Abstract][Full Text] [Related]
23. Use of Moroccan medicinal plant extracts as botanical fungicide against citrus blue mould. Askarne L; Talibi I; Boubaker H; Boudyach EH; Msanda F; Saadi B; Ait Ben Aoumar A Lett Appl Microbiol; 2013 Jan; 56(1):37-43. PubMed ID: 23061438 [TBL] [Abstract][Full Text] [Related]
24. First Report of Sour Rot Caused by Geotrichum citri-aurantii on Key Lime (Citrus aurantifolia) in Colima State, Mexico. Hernández-Montiel LG; Holguín-Peña RJ; Latisnere-Barragan H Plant Dis; 2010 Apr; 94(4):488. PubMed ID: 30754509 [TBL] [Abstract][Full Text] [Related]
25. Cinnamaldehyde promotes the defense response in postharvest citrus fruit inoculated with Penicillium digitatum and Geotrichum citri-aurantii. Duan B; Gao Z; Reymick OO; Ouyang Q; Chen Y; Long C; Yang B; Tao N Pestic Biochem Physiol; 2021 Nov; 179():104976. PubMed ID: 34802526 [TBL] [Abstract][Full Text] [Related]
26. Biological Control of Citrus Postharvest Phytopathogens. Moraes Bazioli J; Belinato JR; Costa JH; Akiyama DY; Pontes JGM; Kupper KC; Augusto F; de Carvalho JE; Fill TP Toxins (Basel); 2019 Aug; 11(8):. PubMed ID: 31390769 [TBL] [Abstract][Full Text] [Related]
27. Biological control of toxigenic citrus and papaya-rotting fungi by Streptomyces violascens MT7 and its extracellular metabolites. Choudhary B; Nagpure A; Gupta RK J Basic Microbiol; 2015 Dec; 55(12):1343-56. PubMed ID: 26214840 [TBL] [Abstract][Full Text] [Related]
28. Inhibitory Mechanisms of Ouyang Q; Shi S; Liu Y; Yang Y; Zhang Y; Yuan X; Tao N; Li L J Fungi (Basel); 2023 Sep; 9(9):. PubMed ID: 37755038 [No Abstract] [Full Text] [Related]
29. Antifungal mechanism of sodium dehydroacetate against Geotrichum citri-aurantii. Tang X; Ouyang Q; Jing G; Shao X; Tao N World J Microbiol Biotechnol; 2018 Jan; 34(2):29. PubMed ID: 29350302 [TBL] [Abstract][Full Text] [Related]
30. Cytosporone B as a Biological Preservative: Purification, Fungicidal Activity and Mechanism of Action against Yin C; Liu H; Shan Y; Gupta VK; Jiang Y; Zhang W; Tan H; Gong L Biomolecules; 2019 Mar; 9(4):. PubMed ID: 30934892 [TBL] [Abstract][Full Text] [Related]
31. Biofilm production by Aureobasidium pullulans improves biocontrol against sour rot in citrus. Klein MN; Kupper KC Food Microbiol; 2018 Feb; 69():1-10. PubMed ID: 28941889 [TBL] [Abstract][Full Text] [Related]
32. Mode of action of metabolites from Bacillus sp. strain IBA 33 on Geotrichum citri-aurantii arthroconidia. Gordillo MA; Navarro AR; Maldonado MC Can J Microbiol; 2015 Nov; 61(11):876-80. PubMed ID: 26394707 [TBL] [Abstract][Full Text] [Related]
33. Genome sequencing and transcriptome analysis of Geotrichum citri-aurantii on citrus reveal the potential pathogenic- and guazatine-resistance related genes. Zhao J; Zhang D; Wang Z; Tian Z; Yang F; Lu X; Long CA Genomics; 2020 Nov; 112(6):4063-4071. PubMed ID: 32650101 [TBL] [Abstract][Full Text] [Related]
34. Dimethyl Dicarbonate as a Food Additive Effectively Inhibits Liu S; Zhang D; Wang Y; Yang F; Zhao J; Du Y; Tian Z; Long C Foods; 2022 Aug; 11(15):. PubMed ID: 35954094 [TBL] [Abstract][Full Text] [Related]
35. Efficacy and Application Strategies for Propiconazole as a New Postharvest Fungicide for Managing Sour Rot and Green Mold of Citrus Fruit. McKay AH; Förster H; Adaskaveg JE Plant Dis; 2012 Feb; 96(2):235-242. PubMed ID: 30731806 [TBL] [Abstract][Full Text] [Related]
36. Inhibition of citrus fungal pathogens by using lactic acid bacteria. Gerez CL; Carbajo MS; Rollán G; Torres Leal G; Font de Valdez G J Food Sci; 2010 Aug; 75(6):M354-9. PubMed ID: 20722936 [TBL] [Abstract][Full Text] [Related]
37. Tryptophan enhances biocontrol efficacy of Metschnikowia citriensis FL01 against postharvest fungal diseases of citrus fruit by increasing pulcherriminic acid production. Zhang H; Wang S; Yi L; Zeng K Int J Food Microbiol; 2023 Feb; 386():110013. PubMed ID: 36436410 [TBL] [Abstract][Full Text] [Related]
38. Effects of dog rose and watercress extracts on control of green mould decay and postharvest quality of orange fruits. Jafari S; Hassandokht M; Javan-Nikkhah M Nat Prod Res; 2014; 28(22):2061-5. PubMed ID: 24896635 [TBL] [Abstract][Full Text] [Related]
39. Combined application of antagonistic Wickerhamomyces anomalus BS91 strain and Cynara cardunculus L. leaf extracts for the control of postharvest decay of citrus fruit. Restuccia C; Lombardo M; Scavo A; Mauromicale G; Cirvilleri G Food Microbiol; 2020 Dec; 92():103583. PubMed ID: 32950167 [TBL] [Abstract][Full Text] [Related]
40. Control of citrus molds using bioactive coatings incorporated with fungal chitosan/plant extracts composite. Tayel AA; Moussa SH; Salem MF; Mazrou KE; El-Tras WF J Sci Food Agric; 2016 Mar; 96(4):1306-12. PubMed ID: 25894505 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]