BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 26458104)

  • 1. Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer.
    Wei J; Tong L
    Nature; 2015 Oct; 526(7575):723-7. PubMed ID: 26458104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the alpha(6)beta(6) holoenzyme of propionyl-coenzyme A carboxylase.
    Huang CS; Sadre-Bazzaz K; Shen Y; Deng B; Zhou ZH; Tong L
    Nature; 2010 Aug; 466(7309):1001-5. PubMed ID: 20725044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotinoyl domain of human acetyl-CoA carboxylase: Structural insights into the carboxyl transfer mechanism.
    Lee CK; Cheong HK; Ryu KS; Lee JI; Lee W; Jeon YH; Cheong C
    Proteins; 2008 Aug; 72(2):613-24. PubMed ID: 18247344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the importance of the biotin carboxylase domain dimer for Staphylococcus aureus pyruvate carboxylase catalysis.
    Yu LP; Chou CY; Choi PH; Tong L
    Biochemistry; 2013 Jan; 52(3):488-96. PubMed ID: 23286247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase.
    Zhang H; Yang Z; Shen Y; Tong L
    Science; 2003 Mar; 299(5615):2064-7. PubMed ID: 12663926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism for the regulation of human ACC2 through phosphorylation by AMPK.
    Cho YS; Lee JI; Shin D; Kim HT; Jung HY; Lee TG; Kang LW; Ahn YJ; Cho HS; Heo YS
    Biochem Biophys Res Commun; 2010 Jan; 391(1):187-92. PubMed ID: 19900410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase.
    Tran TH; Hsiao YS; Jo J; Chou CY; Dietrich LE; Walz T; Tong L
    Nature; 2015 Feb; 518(7537):120-4. PubMed ID: 25383525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans.
    Hagmann A; Hunkeler M; Stuttfeld E; Maier T
    Structure; 2016 Aug; 24(8):1227-1236. PubMed ID: 27396827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetyl-CoA carboxylase from Escherichia coli exhibits a pronounced hysteresis when inhibited by palmitoyl-acyl carrier protein.
    Evans A; Ribble W; Schexnaydre E; Waldrop GL
    Arch Biochem Biophys; 2017 Dec; 636():100-109. PubMed ID: 29100983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Striking Diversity in Holoenzyme Architecture and Extensive Conformational Variability in Biotin-Dependent Carboxylases.
    Tong L
    Adv Protein Chem Struct Biol; 2017; 109():161-194. PubMed ID: 28683917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanism for the potent inhibition of eukaryotic acetyl-coenzyme A carboxylase by soraphen A, a macrocyclic polyketide natural product.
    Shen Y; Volrath SL; Weatherly SC; Elich TD; Tong L
    Mol Cell; 2004 Dec; 16(6):881-91. PubMed ID: 15610732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the backbone dynamics of the apo- and holo-carboxy-terminal domain of the biotin carboxyl carrier subunit of Escherichia coli acetyl-CoA carboxylase.
    Yao X; Soden C; Summers MF; Beckett D
    Protein Sci; 1999 Feb; 8(2):307-17. PubMed ID: 10048324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and function of biotin-dependent carboxylases.
    Tong L
    Cell Mol Life Sci; 2013 Mar; 70(5):863-91. PubMed ID: 22869039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of human and Staphylococcus aureus pyruvate carboxylase and molecular insights into the carboxyltransfer reaction.
    Xiang S; Tong L
    Nat Struct Mol Biol; 2008 Mar; 15(3):295-302. PubMed ID: 18297087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing.
    Athappilly FK; Hendrickson WA
    Structure; 1995 Dec; 3(12):1407-19. PubMed ID: 8747466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The three-dimensional structure of the biotin carboxylase-biotin carboxyl carrier protein complex of E. coli acetyl-CoA carboxylase.
    Broussard TC; Kobe MJ; Pakhomova S; Neau DB; Price AE; Champion TS; Waldrop GL
    Structure; 2013 Apr; 21(4):650-7. PubMed ID: 23499019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and characterization of recombinant fungal acetyl-CoA carboxylase and isolation of a soraphen-binding domain.
    Weatherly SC; Volrath SL; Elich TD
    Biochem J; 2004 May; 380(Pt 1):105-10. PubMed ID: 14766011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A unified molecular mechanism for the regulation of acetyl-CoA carboxylase by phosphorylation.
    Wei J; Zhang Y; Yu TY; Sadre-Bazzaz K; Rudolph MJ; Amodeo GA; Symington LS; Walz T; Tong L
    Cell Discov; 2016; 2():16044. PubMed ID: 27990296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biotinyl domain of Escherichia coli acetyl-CoA carboxylase. Evidence that the "thumb" structure id essential and that the domain functions as a dimer.
    Cronan JE
    J Biol Chem; 2001 Oct; 276(40):37355-64. PubMed ID: 11495922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamic organization of fungal acetyl-CoA carboxylase.
    Hunkeler M; Stuttfeld E; Hagmann A; Imseng S; Maier T
    Nat Commun; 2016 Apr; 7():11196. PubMed ID: 27073141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.