BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 26458117)

  • 1. Phytoremediation efficiency OF CD by Eucalyptus globulus transplanted from polluted and unpolluted sites.
    Luo J; Qi S; Peng L; Wang J
    Int J Phytoremediation; 2016; 18(4):308-14. PubMed ID: 26458117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation potential of cadmium-contaminated soil by Eucalyptus globulus under different coppice systems.
    Luo J; Qi S; Peng L; Xie X
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):321-5. PubMed ID: 25543544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balance Between Soil Remediation and Economic Benefits of Eucalyptus globulus.
    Xing Y; Wang Z; Zhang C; He W; Luo J
    Bull Environ Contam Toxicol; 2019 Jun; 102(6):887-891. PubMed ID: 30976836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A real scale phytoremediation of multi-metal contaminated e-waste recycling site with Eucalyptus globulus assisted by electrical fields.
    Luo J; Wu J; Huo S; Qi S; Gu XS
    Chemosphere; 2018 Jun; 201():262-268. PubMed ID: 29525653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate.
    Sun Y; Wen C; Liang X; He C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-technique phytoremediation approach to purify metals contaminated soil from e-waste recycling site.
    Luo J; Cai L; Qi S; Wu J; Sophie Gu X
    J Environ Manage; 2017 Dec; 204(Pt 1):17-22. PubMed ID: 28846891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of planting density and harvest protocol on field-scale phytoremediation efficiency by Eucalyptus globulus.
    Luo J; He M; Qi S; Wu J; Gu XS
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11343-11350. PubMed ID: 29417481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems.
    Luo J; Qi S; Gu XW; Wang J; Xie X
    Ecotoxicology; 2016 May; 25(4):646-54. PubMed ID: 26846211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phytoremediation efficiency of Eucalyptus globulus treated by static magnetic fields before sowing.
    Luo J; He W; Xing X; Wu J; Gu XWS
    Chemosphere; 2019 Jul; 226():891-897. PubMed ID: 31509918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of Eucalyptus globulus to red and blue light with different combinations and their influence on its efficacy for contaminated soil phytoremediation.
    Luo J; He W; Wu J; Sophie Gu X
    J Environ Manage; 2019 Jul; 241():235-242. PubMed ID: 31005001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecological Risk Assessment of EDTA-Assisted Phytoremediation of Cd Under Different Cultivation Systems.
    Luo J; Qi S; Gu X; Hou T; Lin L
    Bull Environ Contam Toxicol; 2016 Feb; 96(2):259-64. PubMed ID: 26499324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of direct and alternating current electric fields on efficiency promotion and leaching risk alleviation of chelator assisted phytoremediation.
    Luo J; Cai L; Qi S; Wu J; Sophie Gu X
    Ecotoxicol Environ Saf; 2018 Mar; 149():241-247. PubMed ID: 29241117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential of willow for remediation of heavy metal polluted calcareous urban soils.
    Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK
    Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil.
    Hechmi N; Ben Aissa N; Abdenaceur H; Jedidi N
    Int J Phytoremediation; 2015; 17(1-6):109-16. PubMed ID: 25237721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement effects of cytokinin on EDTA assisted phytoremediation and the associated environmental risks.
    Luo J; Cai L; Qi S; Wu J; Gu XWS
    Chemosphere; 2017 Oct; 185():386-393. PubMed ID: 28709043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal remediation with Ficus microcarpa through transplantation and its environmental risks through field scale experiment.
    Luo J; Cai L; Qi S; Wu J; Gu XS
    Chemosphere; 2018 Feb; 193():244-250. PubMed ID: 29136571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation.
    Agnello AC; Bagard M; van Hullebusch ED; Esposito G; Huguenot D
    Sci Total Environ; 2016 Sep; 563-564():693-703. PubMed ID: 26524994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils.
    Balsamo RA; Kelly WJ; Satrio JA; Ruiz-Felix MN; Fetterman M; Wynn R; Hagel K
    Int J Phytoremediation; 2015; 17(1-6):448-55. PubMed ID: 25495935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing storage battery and solar cell in assisting Eucalyptus Globulus to phytoremediate soil polluted by Cd, Pb, and Cu.
    Luo J; He M; Wu J; Huo S; Gu XS
    Int J Phytoremediation; 2019; 21(3):181-190. PubMed ID: 30656980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1.
    Bang J; Kamala-Kannan S; Lee KJ; Cho M; Kim CH; Kim YJ; Bae JH; Kim KH; Myung H; Oh BT
    Int J Phytoremediation; 2015; 17(1-6):515-20. PubMed ID: 25747237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.