BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 26458117)

  • 41. Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L cut flower.
    Mani D; Kumar C; Patel NK
    Ecotoxicol Environ Saf; 2016 Feb; 124():435-446. PubMed ID: 26615479
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil.
    Wan X; Lei M; Chen T
    Sci Total Environ; 2016 Sep; 563-564():796-802. PubMed ID: 26765508
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mycorrhizal limonium sinuatum (L.) mill. Enhances accumulation of lead and cadmium.
    Sheikh-Assadi M; Khandan-Mirkohi A; Alemardan A; Moreno-Jiménez E
    Int J Phytoremediation; 2015; 17(1-6):556-62. PubMed ID: 25747242
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Responses of
    El-Khatib AA; Youssef NA; Barakat NA; Samir NA
    Int J Phytoremediation; 2020; 22(10):986-999. PubMed ID: 32037853
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selected secondary metabolites in Echium vulgare L. populations from nonmetalliferous and metalliferous areas.
    Dresler S; Rutkowska E; Bednarek W; Stanisławski G; Kubrak T; Bogucka-Kocka A; Wójcik M
    Phytochemistry; 2017 Jan; 133():4-14. PubMed ID: 27855956
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Remediation of lead and cadmium-contaminated soils.
    Salama AK; Osman KA; Gouda NA
    Int J Phytoremediation; 2016; 18(4):364-7. PubMed ID: 26515924
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Study on adsorption and remediation of heavy metals by poplar and larch in contaminated soil.
    Wang X; Jia Y
    Environ Sci Pollut Res Int; 2010 Aug; 17(7):1331-8. PubMed ID: 20340050
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, salem district, tamilnadu.
    Padmapriya S; Murugan N; Ragavendran C; Thangabalu R; Natarajan D
    Int J Phytoremediation; 2016; 18(3):288-94. PubMed ID: 26366709
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon.
    Lum AF; Ngwa ES; Chikoye D; Suh CE
    Int J Phytoremediation; 2014; 16(3):302-19. PubMed ID: 24912226
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of Sesbania sesban (L.) Merr. as an Efficient and Well Adapted Phytoremediation Tool for Cd Polluted Soils.
    Varun M; Ogunkunle CO; D'Souza R; Favas P; Paul M
    Bull Environ Contam Toxicol; 2017 Jun; 98(6):867-873. PubMed ID: 28456824
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The use of spent mushroom compost to enhance the ability of Atriplex halimus to phytoremediate contaminated mine soils.
    Frutos I; García-Delgado C; Cala V; Gárate A; Eymar E
    Environ Technol; 2017 May; 38(9):1075-1084. PubMed ID: 27494563
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Using solar cell to phytoremediate field-scale metal polluted soil assisted by electric field.
    Luo J; Yang D; Qi S; Wu J; Gu XS
    Ecotoxicol Environ Saf; 2018 Dec; 165():404-410. PubMed ID: 30218963
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants.
    Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F
    Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phytoremediation of soil contaminated with cadmium and/or 2,4,6-trinitrotoluene.
    Baek KH; Chang JY; Chang YY; Bae BH; Kim J; Lee IS
    J Environ Biol; 2006 May; 27(2 Suppl):311-6. PubMed ID: 17436516
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chelant-enhanced heavy metal uptake by Eucalyptus trees under controlled deficit irrigation.
    Fine P; Paresh R; Beriozkin A; Hass A
    Sci Total Environ; 2014 Sep; 493():995-1005. PubMed ID: 25014186
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium.
    Hechmi N; Ben Aissa N; Abdennaceur H; Jedidi N
    Int J Phytoremediation; 2013; 15(7):703-13. PubMed ID: 23819269
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting.
    Wei SH; Zhou QX
    Environ Sci Pollut Res Int; 2006 May; 13(3):151-5. PubMed ID: 16758704
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of Simplicillium chinense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils.
    Jin Z; Deng S; Wen Y; Jin Y; Pan L; Zhang Y; Black T; Jones KC; Zhang H; Zhang D
    Sci Total Environ; 2019 Dec; 697():134148. PubMed ID: 31479903
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phytoextraction of HG by parsley (Petroselinum crispum) and its growth responses.
    Bibi A; Farooq U; Naz S; Khan A; Khan S; Sarwar R; Mahmood Q; Alam A; Mirza N
    Int J Phytoremediation; 2016; 18(4):354-7. PubMed ID: 26514060
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High potential of symbiotic interactions between native mycorrhizal fungi and the exotic tree Eucalyptus camaldulensis for phytostabilization of metal-contaminated arid soils.
    Ouaryi A; Boularbah A; Sanguin H; Hafidi M; Baudoin E; Ouahmane L; Le Roux C; Galiana A; Prin Y; Duponnois R
    Int J Phytoremediation; 2016; 18(1):41-7. PubMed ID: 26529094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.