BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26458219)

  • 1. A coupled subsample displacement estimation method for ultrasound-based strain elastography.
    Jiang J; Hall TJ
    Phys Med Biol; 2015 Nov; 60(21):8347-64. PubMed ID: 26458219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A PDE-Based Regularization Algorithm Toward Reducing Speckle Tracking Noise: A Feasibility Study for Ultrasound Breast Elastography.
    Guo L; Xu Y; Xu Z; Jiang J
    Ultrason Imaging; 2015 Oct; 37(4):277-93. PubMed ID: 25452434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel tissue mechanics-based method for improved motion tracking in quasi-static ultrasound elastography.
    Kheirkhah N; Dempsey S; Sadeghi-Naini A; Samani A
    Med Phys; 2023 Apr; 50(4):2176-2194. PubMed ID: 36398744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging.
    Al Mukaddim R; Meshram NH; Varghese T
    Phys Med Biol; 2020 Mar; 65(6):065008. PubMed ID: 32028272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of strain images of a breast-mimicking phantom from 3D CT image data.
    Kim JG; Aowlad Hossain AB; Shin JH; Lee SY
    Med Phys; 2012 Sep; 39(9):5469-78. PubMed ID: 22957614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approach to unbiased subsample interpolation for motion tracking.
    McCormick MM; Varghese T
    Ultrason Imaging; 2013 Apr; 35(2):76-87. PubMed ID: 23493609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct and gradient-based average strain estimation by using weighted nearest neighbor cross-correlation peaks.
    Hussain MA; Abu Anas EM; Alam SK; Lee SY; Hasan MK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1713-28. PubMed ID: 22899118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3-D Region-Growing Motion-Tracking Method for Ultrasound Elasticity Imaging.
    Wang Y; Jiang J; Hall TJ
    Ultrasound Med Biol; 2018 Aug; 44(8):1638-1653. PubMed ID: 29784436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D estimation of soft biological tissue deformation from radio-frequency ultrasound volume acquisitions.
    Deprez JF; Brusseau E; Schmitt C; Cloutier G; Basset O
    Med Image Anal; 2009 Feb; 13(1):116-27. PubMed ID: 18823814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal.
    Slimi T; Moussa IM; Kraiem T; Mahjoubi H
    Biomed Eng Online; 2017 Jan; 16(1):19. PubMed ID: 28095866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data.
    Lopata RG; Nillesen MM; Hansen HH; Gerrits IH; Thijssen JM; de Korte CL
    Ultrasound Med Biol; 2009 May; 35(5):796-812. PubMed ID: 19282094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct mean strain estimation for elastography using nearest-neighbor weighted least-squares approach in the frequency domain.
    Hasan MK; Anas EM; Alam SK; Lee SY
    Ultrasound Med Biol; 2012 Oct; 38(10):1759-77. PubMed ID: 22818879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural-network-based Motion Tracking for Breast Ultrasound Strain Elastography: An Initial Assessment of Performance and Feasibility.
    Peng B; Xian Y; Zhang Q; Jiang J
    Ultrason Imaging; 2020 Mar; 42(2):74-91. PubMed ID: 31997720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional Ultrasound Elasticity Imaging on an Automated Breast Volume Scanning System.
    Wang Y; Nasief HG; Kohn S; Milkowski A; Clary T; Barnes S; Barbone PE; Hall TJ
    Ultrason Imaging; 2017 Nov; 39(6):369-392. PubMed ID: 28585511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial Compounding Technique to Obtain Rotation Elastogram: A Feasibility Study.
    Kothawala A; Chandramoorthi S; Reddy NRK; Thittai AK
    Ultrasound Med Biol; 2017 Jun; 43(6):1290-1301. PubMed ID: 28433440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A GPU-Accelerated 3-D Coupled Subsample Estimation Algorithm for Volumetric Breast Strain Elastography.
    Peng B; Wang Y; Hall TJ; Jiang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Apr; 64(4):694-705. PubMed ID: 28166493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-Strain 3-D in Vivo Breast Ultrasound Strain Elastography Using a Multi-compression Strategy and a Whole-Breast Scanning System.
    Wang Y; Bayer M; Jiang J; Hall TJ
    Ultrasound Med Biol; 2019 Dec; 45(12):3145-3159. PubMed ID: 31548103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical Minimization-Based Regularized Subpixel Shear-Wave Tracking for Ultrasound Elastography.
    Horeh MD; Asif A; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):285-296. PubMed ID: 30530321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A generalized speckle tracking algorithm for ultrasonic strain imaging using dynamic programming.
    Jiang J; Hall TJ
    Ultrasound Med Biol; 2009 Nov; 35(11):1863-79. PubMed ID: 19682789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel breast software phantom for biomechanical modeling of elastography.
    Bhatti SN; Sridhar-Keralapura M
    Med Phys; 2012 Apr; 39(4):1748-68. PubMed ID: 22482599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.