BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 26458422)

  • 1. Uniform Fe3O4 coating on flower-like ZnO nanostructures by atomic layer deposition for electromagnetic wave absorption.
    Wan G; Wang G; Huang X; Zhao H; Li X; Wang K; Yu L; Peng X; Qin Y
    Dalton Trans; 2015 Nov; 44(43):18804-9. PubMed ID: 26458422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption.
    Sun D; Zou Q; Wang Y; Wang Y; Jiang W; Li F
    Nanoscale; 2014 Jun; 6(12):6557-62. PubMed ID: 24740171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable n-Fe
    Zhang H; Zhang B; Chen A; Qin Y
    Dalton Trans; 2017 Jun; 46(23):7434-7440. PubMed ID: 28548671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochemical decoration of magnetic composites with silver nanostructures for determination of creatinine in urine by surface-enhanced Raman spectroscopy.
    Alula MT; Yang J
    Talanta; 2014 Dec; 130():55-62. PubMed ID: 25159379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity.
    Kayaci F; Ozgit-Akgun C; Donmez I; Biyikli N; Uyar T
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6185-94. PubMed ID: 23088303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable Fabrication of Fe₃O₄/ZnO Core⁻Shell Nanocomposites and Their Electromagnetic Wave Absorption Performance in the 2⁻18 GHz Frequency Range.
    Sun X; Ma G; Lv X; Sui M; Li H; Wu F; Wang J
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29751645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coin-like α-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance.
    Lv H; Liang X; Cheng Y; Zhang H; Tang D; Zhang B; Ji G; Du Y
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4744-50. PubMed ID: 25664491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Cost Carbothermal Reduction Preparation of Monodisperse Fe
    Liu Y; Fu Y; Liu L; Li W; Guan J; Tong G
    ACS Appl Mater Interfaces; 2018 May; 10(19):16511-16520. PubMed ID: 29672019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic layer deposition of quantum-confined ZnO nanostructures.
    King DM; Johnson SI; Li J; Du X; Liang X; Weimer AW
    Nanotechnology; 2009 May; 20(19):195401. PubMed ID: 19420639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The construction of carbon-coated Fe
    Wang K; Wan G; Wang G; He Z; Shi S; Wu L; Wang G
    J Colloid Interface Sci; 2018 Feb; 511():307-317. PubMed ID: 29031150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D core-shell Fe
    Liao J; Qiu J; Wang G; Du R; Tsidaeva N; Wang W
    J Colloid Interface Sci; 2021 Dec; 604():537-549. PubMed ID: 34280754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth mechanism and photoluminescence property of flower-like ZnO nanostructures synthesized by starch-assisted sonochemical method.
    Mishra P; Yadav RS; Pandey AC
    Ultrason Sonochem; 2010 Mar; 17(3):560-5. PubMed ID: 19932043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An advanced fabrication method of highly ordered ZnO nanowire arrays on silicon substrates by atomic layer deposition.
    Subannajui K; Güder F; Danhof J; Menzel A; Yang Y; Kirste L; Wang C; Cimalla V; Schwarz U; Zacharias M
    Nanotechnology; 2012 Jun; 23(23):235607. PubMed ID: 22609898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.
    Najim M; Modi G; Mishra YK; Adelung R; Singh D; Agarwala V
    Phys Chem Chem Phys; 2015 Sep; 17(35):22923-33. PubMed ID: 26267361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption.
    Wang Z; Wu L; Zhou J; Jiang Z; Shen B
    Nanoscale; 2014 Nov; 6(21):12298-302. PubMed ID: 25080205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of silver nanoparticles coated ZnO/Fe
    Alula MT; Lemmens P; Bo L; Wulferding D; Yang J; Spende H
    Anal Chim Acta; 2019 Sep; 1073():62-71. PubMed ID: 31146837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between resistance and field emission performance of individual ZnO one-dimensional nanostructures.
    She J; Xiao Z; Yang Y; Deng S; Chen J; Yang G; Xu N
    ACS Nano; 2008 Oct; 2(10):2015-22. PubMed ID: 19206446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multifunctional β-CD-modified Fe3O4@ZnO:Er(3+),Yb(3+) nanocarrier for antitumor drug delivery and microwave-triggered drug release.
    Peng H; Cui B; Li G; Wang Y; Li N; Chang Z; Wang Y
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():253-63. PubMed ID: 25491985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable field emission performance from urchin-like ZnO nanostructures.
    Jiang H; Hu J; Gu F; Li C
    Nanotechnology; 2009 Feb; 20(5):055706. PubMed ID: 19417365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile coprecipitation method to synthesize Fe
    Meng R; Zhang T; Yu H; Zhang J; Wen G; Huang X; Huang L; Xia L; Zhong B
    Nanotechnology; 2019 May; 30(18):185704. PubMed ID: 30650393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.