These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
622 related articles for article (PubMed ID: 26459023)
1. Genome-wide analysis of overlapping genes regulated by iron deficiency and phosphate starvation reveals new interactions in Arabidopsis roots. Li W; Lan P BMC Res Notes; 2015 Oct; 8():555. PubMed ID: 26459023 [TBL] [Abstract][Full Text] [Related]
2. Expression changes of ribosomal proteins in phosphate- and iron-deficient Arabidopsis roots predict stress-specific alterations in ribosome composition. Wang J; Lan P; Gao H; Zheng L; Li W; Schmidt W BMC Genomics; 2013 Nov; 14():783. PubMed ID: 24225185 [TBL] [Abstract][Full Text] [Related]
3. Iron Availability Affects Phosphate Deficiency-Mediated Responses, and Evidence of Cross-Talk with Auxin and Zinc in Arabidopsis. Rai V; Sanagala R; Sinilal B; Yadav S; Sarkar AK; Dantu PK; Jain A Plant Cell Physiol; 2015 Jun; 56(6):1107-23. PubMed ID: 25759329 [TBL] [Abstract][Full Text] [Related]
4. Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency. Li H; Wang L; Yang ZM Gene; 2015 Jan; 554(1):16-24. PubMed ID: 25300251 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide co-expression analysis predicts protein kinases as important regulators of phosphate deficiency-induced root hair remodeling in Arabidopsis. Lan P; Li W; Schmidt W BMC Genomics; 2013 Apr; 14():210. PubMed ID: 23547783 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide analysis of gene expression profiling revealed that COP9 signalosome is essential for correct expression of Fe homeostasis genes in Arabidopsis. Eroglu S; Aksoy E Biometals; 2017 Oct; 30(5):685-698. PubMed ID: 28744713 [TBL] [Abstract][Full Text] [Related]
7. Modulation of Phosphate Deficiency-Induced Metabolic Changes by Iron Availability in Chutia R; Scharfenberg S; Neumann S; Abel S; Ziegler J Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299231 [TBL] [Abstract][Full Text] [Related]
8. Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation. Lan P; Li W; Schmidt W Mol Cell Proteomics; 2012 Nov; 11(11):1156-66. PubMed ID: 22843991 [TBL] [Abstract][Full Text] [Related]
9. Phosphate starvation induces DNA methylation in the vicinity of cis-acting elements known to regulate the expression of phosphate-responsive genes. Yong-Villalobos L; Cervantes-Pérez SA; Gutiérrez-Alanis D; Gonzáles-Morales S; Martínez O; Herrera-Estrella L Plant Signal Behav; 2016 May; 11(5):e1173300. PubMed ID: 27185363 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the AtSPX3 Promoter Elucidates its Complex Regulation in Response to Phosphorus Deficiency. Li Y; Wu H; Fan H; Zhao T; Ling HQ Plant Cell Physiol; 2016 Aug; 57(8):1767-78. PubMed ID: 27382128 [TBL] [Abstract][Full Text] [Related]
11. [The effects of phosphorus, glucose and cytokinin on SEN1 gene expression in Arabidopsis]. Yu C; Hou XL; Wu P Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):85-9. PubMed ID: 15692183 [TBL] [Abstract][Full Text] [Related]
12. The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. Zhang J; Liu B; Li M; Feng D; Jin H; Wang P; Liu J; Xiong F; Wang J; Wang HB Plant Cell; 2015 Mar; 27(3):787-805. PubMed ID: 25794933 [TBL] [Abstract][Full Text] [Related]
13. Iron and callose homeostatic regulation in rice roots under low phosphorus. Ding Y; Wang Z; Ren M; Zhang P; Li Z; Chen S; Ge C; Wang Y BMC Plant Biol; 2018 Dec; 18(1):326. PubMed ID: 30514218 [TBL] [Abstract][Full Text] [Related]
14. Arabidopsis MYB-Related HHO2 Exerts a Regulatory Influence on a Subset of Root Traits and Genes Governing Phosphate Homeostasis. Nagarajan VK; Satheesh V; Poling MD; Raghothama KG; Jain A Plant Cell Physiol; 2016 Jun; 57(6):1142-52. PubMed ID: 27016098 [TBL] [Abstract][Full Text] [Related]
15. Comparative expression profiling reveals a role of the root apoplast in local phosphate response. Hoehenwarter W; Mönchgesang S; Neumann S; Majovsky P; Abel S; Müller J BMC Plant Biol; 2016 Apr; 16():106. PubMed ID: 27121119 [TBL] [Abstract][Full Text] [Related]
16. Members of a small family of nodulin-like genes are regulated under iron deficiency in roots of Arabidopsis thaliana. Gollhofer J; Schläwicke C; Jungnick N; Schmidt W; Buckhout TJ Plant Physiol Biochem; 2011 May; 49(5):557-64. PubMed ID: 21411332 [TBL] [Abstract][Full Text] [Related]
17. Modulation of the Phosphate-Deficient Responses by MicroRNA156 and its Targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 in Arabidopsis. Lei KJ; Lin YM; Ren J; Bai L; Miao YC; An GY; Song CP Plant Cell Physiol; 2016 Jan; 57(1):192-203. PubMed ID: 26647245 [TBL] [Abstract][Full Text] [Related]
18. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. Calderon-Vazquez C; Ibarra-Laclette E; Caballero-Perez J; Herrera-Estrella L J Exp Bot; 2008; 59(9):2479-97. PubMed ID: 18503042 [TBL] [Abstract][Full Text] [Related]
19. The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. Kobayashi T; Itai RN; Ogo Y; Kakei Y; Nakanishi H; Takahashi M; Nishizawa NK Plant J; 2009 Dec; 60(6):948-61. PubMed ID: 19737364 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions. Zanin L; Venuti S; Zamboni A; Varanini Z; Tomasi N; Pinton R BMC Genomics; 2017 Feb; 18(1):154. PubMed ID: 28193158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]