These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26459429)

  • 21. Regulation of replication of lambda phage and lambda plasmid DNAs at low temperature.
    Gabig M; Obuchowski M; Srutkowska S; Wegrzyn G
    Mol Gen Genet; 1998 Jun; 258(5):494-502. PubMed ID: 9669331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bistability and switching in the lysis/lysogeny genetic regulatory network of bacteriophage lambda.
    Tian T; Burrage K
    J Theor Biol; 2004 Mar; 227(2):229-37. PubMed ID: 14990387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A programme for the construction of a lambda phage.
    Brammar WJ; Hadfield C
    J Embryol Exp Morphol; 1984 Nov; 83 Suppl():75-88. PubMed ID: 6241940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of salt shock on stability of lambdaimm434 lysogens.
    Shkilnyj P; Koudelka GB
    J Bacteriol; 2007 Apr; 189(8):3115-23. PubMed ID: 17307857
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptional analysis of the genetic elements involved in the lysogeny/lysis switch in the temperate lactococcal bacteriophage phiLC3, and identification of the Cro-like protein ORF76.
    Blatny JM; Ventura M; Rosenhaven EM; Risøen PA; Lunde M; Brüssow H; Nes IF
    Mol Genet Genomics; 2003 Jul; 269(4):487-98. PubMed ID: 12759744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic and physiological control of host cell lysis by bacteriophage lambda.
    Rolfe BG; Campbell JH
    J Virol; 1977 Sep; 23(3):626-36. PubMed ID: 330879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A phi 80 function inhibitory for growth of lambdoid phage in him mutants of Escherichia coli deficient in integration host factor. II. Physiological analysis of the abortive infection.
    Mozola MA; Carver DL; Friedman DI
    Virology; 1985 Jan; 140(2):328-41. PubMed ID: 3155886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lysogenization of Escherichia coli by bacteriophage Lambda: complementary activity of the host's DNA polymerase I and ligase and bacteriophage replication proteins Q and P.
    Ray U; Sakalka A
    J Virol; 1976 May; 18(2):511-7. PubMed ID: 775126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies on polylysogens containing lambda N-cI- prophages. II. Role of high multiplicities in lysogen formation by lambda N-cI- phage.
    Chattopadhyay DJ; Nag DK; Mandal NC
    Virology; 1983 Jul; 128(2):265-70. PubMed ID: 6225245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Yet another way that phage λ manipulates its Escherichia coli host: λrexB is involved in the lysogenic-lytic switch.
    Engelberg-Kulka H; Kumar S
    Mol Microbiol; 2015 May; 96(4):689-93. PubMed ID: 25684601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of bacteriophage lambda Q- mutant for stable and efficient production of recombinant protein in Escherichia coli system.
    Lin CS; Chen BY; Park TH; Lim HC
    Biotechnol Bioeng; 1998 Mar; 57(5):529-35. PubMed ID: 10099231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Population Dynamics of Phage and Bacteria in Spatially Structured Habitats Using Phage λ and Escherichia coli.
    Mitarai N; Brown S; Sneppen K
    J Bacteriol; 2016 Jun; 198(12):1783-93. PubMed ID: 27068593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phage λ--new insights into regulatory circuits.
    Węgrzyn G; Licznerska K; Węgrzyn A
    Adv Virus Res; 2012; 82():155-78. PubMed ID: 22420854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutants of T7 bacteriophage inhibited by lambda prophage.
    Pao CC; Speyer JF
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3642-6. PubMed ID: 1059155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lytic gene expression in the temperate bacteriophage GIL01 is activated by a phage-encoded LexA homologue.
    Fornelos N; Browning DF; Pavlin A; Podlesek Z; Hodnik V; Salas M; Butala M
    Nucleic Acids Res; 2018 Oct; 46(18):9432-9443. PubMed ID: 30053203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of gene regulatory networks and their dependence on network topology and quantitative parameters - the case of phage λ.
    Ruklisa D; Brazma A; Cerans K; Schlitt T; Viksna J
    BMC Bioinformatics; 2019 May; 20(1):296. PubMed ID: 31151381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HflD, an Escherichia coli protein involved in the lambda lysis-lysogeny switch, impairs transcription activation by lambdaCII.
    Parua PK; Mondal A; Parrack P
    Arch Biochem Biophys; 2010 Jan; 493(2):175-83. PubMed ID: 19853572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. hflB, a new Escherichia coli locus regulating lysogeny and the level of bacteriophage lambda cII protein.
    Banuett F; Hoyt MA; McFarlane L; Echols H; Herskowitz I
    J Mol Biol; 1986 Jan; 187(2):213-24. PubMed ID: 2939254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Timescales modulate optimal lysis-lysogeny decision switches and near-term phage reproduction.
    Shivam S; Li G; Lucia-Sanz A; Weitz JS
    Virus Evol; 2022; 8(1):veac037. PubMed ID: 35615104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of cellular death signals in the reactivation of herpes simplex virus type 1 and lambda bacteriophage from a latent state.
    Panet A; Braun E; Honigman A; Steiner I
    J Theor Biol; 2005 Sep; 236(1):88-94. PubMed ID: 15967186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.