These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26459441)

  • 41. An integrated microfluidic PCR system with immunomagnetic nanoparticles for the detection of bacterial pathogens.
    Ganesh I; Tran BM; Kim Y; Kim J; Cheng H; Lee NY; Park S
    Biomed Microdevices; 2016 Dec; 18(6):116. PubMed ID: 27975186
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests.
    Mauk MG; Song J; Liu C; Bau HH
    Biosensors (Basel); 2018 Feb; 8(1):. PubMed ID: 29495424
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Integrated microfluidic platform for oral diagnostics.
    Herr AE; Hatch AV; Giannobile WV; Throckmorton DJ; Tran HM; Brennan JS; Singh AK
    Ann N Y Acad Sci; 2007 Mar; 1098():362-74. PubMed ID: 17435142
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes.
    Kuan DH; Wang IS; Lin JR; Yang CH; Huang CH; Lin YH; Lin CT; Huang NT
    Lab Chip; 2016 Aug; 16(16):3105-13. PubMed ID: 27314254
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel biochip platform for nucleic acid analysis.
    Pernagallo S; Ventimiglia G; Cavalluzzo C; Alessi E; Ilyine H; Bradley M; Diaz-Mochon JJ
    Sensors (Basel); 2012; 12(6):8100-11. PubMed ID: 22969389
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aptamers as affinity reagents in an integrated electrophoretic lab-on-a-chip platform.
    Hecht AH; Sommer GJ; Durland RH; Yang X; Singh AK; Hatch AV
    Anal Chem; 2010 Nov; 82(21):8813-20. PubMed ID: 20945866
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fully 3D printed integrated reactor array for point-of-care molecular diagnostics.
    Kadimisetty K; Song J; Doto AM; Hwang Y; Peng J; Mauk MG; Bushman FD; Gross R; Jarvis JN; Liu C
    Biosens Bioelectron; 2018 Jun; 109():156-163. PubMed ID: 29550739
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications.
    Luka G; Ahmadi A; Najjaran H; Alocilja E; DeRosa M; Wolthers K; Malki A; Aziz H; Althani A; Hoorfar M
    Sensors (Basel); 2015 Dec; 15(12):30011-31. PubMed ID: 26633409
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent Advances in Nano-Bio-Sensing Fabrication Technology for the Detection of Oral Cancer.
    Singhal J; Verma S; Kumar S; Mehrotra D
    Mol Biotechnol; 2021 May; 63(5):339-362. PubMed ID: 33638110
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection.
    Tang R; Yang H; Gong Y; You M; Liu Z; Choi JR; Wen T; Qu Z; Mei Q; Xu F
    Lab Chip; 2017 Mar; 17(7):1270-1279. PubMed ID: 28271104
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown.
    Tahvildari R; Beamish E; Tabard-Cossa V; Godin M
    Lab Chip; 2015 Mar; 15(6):1407-11. PubMed ID: 25631885
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A microfluidic paper-based laser-induced fluorescence sensor based on duplex-specific nuclease amplification for selective and sensitive detection of miRNAs in cancer cells.
    Cai X; Zhang H; Yu X; Wang W
    Talanta; 2020 Aug; 216():120996. PubMed ID: 32456922
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Release and Detection of microRNA by Combining Magnetic Hyperthermia and Electrochemistry Modules on a Microfluidic Chip.
    Horny MC; Dupuis V; Siaugue JM; Gamby J
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383936
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nucleic acid diagnostics on the total integrated lab-on-a-disc for point-of-care testing.
    Nguyen HV; Nguyen VD; Nguyen HQ; Chau THT; Lee EY; Seo TS
    Biosens Bioelectron; 2019 Sep; 141():111466. PubMed ID: 31254863
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mini-thermal platform integrated with microfluidic device with on-site detection for real-time DNA amplification.
    Kulkarni MB; Goel S
    Biotechniques; 2023 Apr; 74(4):158-171. PubMed ID: 37139914
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A sample-in-digital-answer-out system for rapid detection and quantitation of infectious pathogens in bodily fluids.
    Yang H; Chen Z; Cao X; Li Z; Stavrakis S; Choo J; deMello AJ; Howes PD; He N
    Anal Bioanal Chem; 2018 Nov; 410(27):7019-7030. PubMed ID: 30155705
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel bead-based platform for direct detection of unlabelled nucleic acids through Single Nucleobase Labelling.
    Venkateswaran S; Luque-González MA; Tabraue-Chávez M; Fara MA; López-Longarela B; Cano-Cortes V; López-Delgado FJ; Sánchez-Martín RM; Ilyine H; Bradley M; Pernagallo S; Díaz-Mochón JJ
    Talanta; 2016 Dec; 161():489-496. PubMed ID: 27769437
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fast Prototyping Microfluidics: Integrating Droplet Digital Lamp for Absolute Quantification of Cancer Biomarkers.
    Oliveira B; Veigas B; Fernandes AR; Águas H; Martins R; Fortunato E; Baptista PV
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183359
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip.
    Yeh EC; Fu CC; Hu L; Thakur R; Feng J; Lee LP
    Sci Adv; 2017 Mar; 3(3):e1501645. PubMed ID: 28345028
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MS
    Wu X; Pan J; Zhu X; Hong C; Hu A; Zhu C; Liu Y; Yang K; Zhu L
    Analyst; 2021 Jun; 146(12):3823-3833. PubMed ID: 34121097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.