These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26459446)

  • 1. Reprint of 'Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper'.
    Oyola-Reynoso S; Heim AP; Halbertsma-Black J; Zhao C; Tevis ID; Çınar S; Cademartiri R; Liu X; Bloch JF; Thuo MM
    Talanta; 2015 Dec; 145():73-7. PubMed ID: 26459446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper.
    Oyola-Reynoso S; Heim AP; Halbertsma-Black J; Zhao C; Tevis ID; Çınar S; Cademartiri R; Liu X; Bloch JF; Thuo MM
    Talanta; 2015 Nov; 144():289-93. PubMed ID: 26452824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing.
    Lu Y; Shi W; Qin J; Lin B
    Anal Chem; 2010 Jan; 82(1):329-35. PubMed ID: 20000582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous-Ink, Multiplexed Pen-Plotter Approach for Low-Cost, High-Throughput Fabrication of Paper-Based Microfluidics.
    Amin R; Ghaderinezhad F; Li L; Lepowsky E; Yenilmez B; Knowlton S; Tasoglu S
    Anal Chem; 2017 Jun; 89(12):6351-6357. PubMed ID: 28598152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of paper-based microfluidic sensors by printing.
    Li X; Tian J; Garnier G; Shen W
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):564-70. PubMed ID: 20097546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices.
    Yang X; Forouzan O; Brown TP; Shevkoplyas SS
    Lab Chip; 2012 Jan; 12(2):274-80. PubMed ID: 22094609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication.
    Sameenoi Y; Nongkai PN; Nouanthavong S; Henry CS; Nacapricha D
    Analyst; 2014 Dec; 139(24):6580-8. PubMed ID: 25360590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pushing the Limits of Spatial Assay Resolution for Paper-Based Microfluidics Using Low-Cost and High-Throughput Pen Plotter Approach.
    Amin R; Ghaderinezhad F; Bridge C; Temirel M; Jones S; Toloueinia P; Tasoglu S
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32599882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps.
    Dornelas KL; Dossi N; Piccin E
    Anal Chim Acta; 2015 Feb; 858():82-90. PubMed ID: 25597806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay.
    Lu Y; Shi W; Jiang L; Qin J; Lin B
    Electrophoresis; 2009 May; 30(9):1497-500. PubMed ID: 19340829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of paper devices via laser-heating-wax-printing for high-tech enzyme-linked immunosorbent assays with low-tech pen-type pH meter readout.
    Le S; Zhou H; Nie J; Cao C; Yang J; Pan H; Li J; Zhang Y
    Analyst; 2017 Jan; 142(3):511-516. PubMed ID: 28106171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melt-and-mold fabrication (MnM-Fab) of reconfigurable low-cost devices for use in resource-limited settings.
    Li Z; Tevis ID; Oyola-Reynoso S; Newcomb LB; Halbertsma-Black J; Bloch JF; Thuo M
    Talanta; 2015 Dec; 145():20-8. PubMed ID: 26459439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-cost fabrication of paper-based microfluidic devices by one-step plotting.
    Nie J; Zhang Y; Lin L; Zhou C; Li S; Zhang L; Li J
    Anal Chem; 2012 Aug; 84(15):6331-5. PubMed ID: 22881397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping.
    Songjaroen T; Dungchai W; Chailapakul O; Laiwattanapaisal W
    Talanta; 2011 Oct; 85(5):2587-93. PubMed ID: 21962687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper.
    Costa MN; Veigas B; Jacob JM; Santos DS; Gomes J; Baptista PV; Martins R; Inácio J; Fortunato E
    Nanotechnology; 2014 Mar; 25(9):094006. PubMed ID: 24521980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing.
    Dungchai W; Chailapakul O; Henry CS
    Analyst; 2011 Jan; 136(1):77-82. PubMed ID: 20871884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thread based devices for low-cost diagnostics.
    Reches M
    Methods Mol Biol; 2013; 949():197-205. PubMed ID: 23329445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.