These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26459502)

  • 41. Watson-Crick and sugar-edge base pairing of cytosine in the gas phase: UV and infrared spectra of cytosine·2-pyridone.
    Frey JA; Ottiger P; Leutwyler S
    J Phys Chem B; 2014 Jan; 118(3):682-91. PubMed ID: 24383817
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Is the DPT tautomerization of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question.
    Brovarets' OO; Zhurakivsky RO; Hovorun DM
    J Comput Chem; 2014 Mar; 35(6):451-66. PubMed ID: 24382756
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Structural and Dipole Structure Peculiarities of Hoogsteen Base Pairs Formed in Complementary Nucleobases according to ab initio Quantum Mechanics Studies].
    Petrenko YM
    Biofizika; 2015; 60(5):853-60. PubMed ID: 26591595
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pairing of isolated nucleic-acid bases in the absence of the DNA backbone.
    Nir E; Kleinermanns K; de Vries MS
    Nature; 2000 Dec 21-28; 408(6815):949-51. PubMed ID: 11140676
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The nature of the transition mismatches with Watson-Crick architecture: the G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(5):925-45. PubMed ID: 24842163
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Zipper-like Watson-Crick base-pairs.
    Chou SH; Chin KH
    J Mol Biol; 2001 Sep; 312(4):753-68. PubMed ID: 11575930
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Double proton transfer in the isolated and DNA-embedded guanine-cytosine base pair.
    Zoete V; Meuwly M
    J Chem Phys; 2004 Sep; 121(9):4377-88. PubMed ID: 15332989
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On the deactivation mechanisms of adenine-thymine base pair.
    Gobbo JP; Saurí V; Roca-Sanjuán D; Serrano-Andrés L; Merchán M; Borin AC
    J Phys Chem B; 2012 Apr; 116(13):4089-97. PubMed ID: 22414119
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Quantum-chemical investigation of tautomerization ways of Watson-Crick DNA base pair guanine-cytosine].
    Brovarets' OO; Hovorun DM
    Ukr Biokhim Zh (1999); 2010; 82(3):55-60. PubMed ID: 21328878
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction of interaction energies of substituted hydrogen-bonded Watson-Crick cytosine:guanine(8X) base pairs.
    Xue C; Popelier PL
    J Phys Chem B; 2009 Mar; 113(10):3245-50. PubMed ID: 19260717
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elementary lesions in DNA subunits: electron, hydrogen atom, proton, and hydride transfers.
    Duncan Lyngdoh RH; Schaefer HF
    Acc Chem Res; 2009 Apr; 42(4):563-72. PubMed ID: 19231845
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Theoretical exploration of structures and electronic properties of double-electron oxidized guanine-cytosine base pairs with intriguing radical-radical interactions.
    Wang M; Zhao J; Bu Y
    Phys Chem Chem Phys; 2013 Nov; 15(42):18453-63. PubMed ID: 24064497
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrafast excited-state dynamics in hexaethyleneglycol-linked DNA homoduplexes made of A·T base pairs.
    Chen J; Thazhathveetil AK; Lewis FD; Kohler B
    J Am Chem Soc; 2013 Jul; 135(28):10290-3. PubMed ID: 23837540
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanoswitches based on DNA base pairs: why adenine-thymine is less suitable than guanine-cytosine.
    Fonseca Guerra C; van der Wijst T; Bickelhaupt FM
    Chemphyschem; 2006 Sep; 7(9):1971-9. PubMed ID: 16888742
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrogen bonding in mimics of Watson-Crick base pairs involving C-H proton donor and F proton acceptor groups: a theoretical study.
    Guerra CF; Bickelhaupt FM; Baerends EJ
    Chemphyschem; 2004 Apr; 5(4):481-7. PubMed ID: 15139221
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photostability of isolated and paired nucleobases: N-H dissociation of adenine and hydrogen transfer in its base pairs examined by laser spectroscopy.
    Hünig I; Plützer C; Seefeld KA; Löwenich D; Nispel M; Kleinermanns K
    Chemphyschem; 2004 Sep; 5(9):1427-31. PubMed ID: 15499861
    [No Abstract]   [Full Text] [Related]  

  • 57. A Kinetic Approach to Double Proton Transfer in Watson-Crick DNA Base Pairs.
    Umesaki K; Odai K
    J Phys Chem B; 2020 Mar; 124(9):1715-1722. PubMed ID: 32045241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photoinduced electron transfer in a Watson-Crick base-paired, 2-aminopurine:uracil-C60 hydrogen bonding conjugate.
    D'Souza F; Gadde S; Islam DM; Pang SC; Schumacher AL; Zandler ME; Horie R; Araki Y; Ito O
    Chem Commun (Camb); 2007 Feb; (5):480-2. PubMed ID: 17252101
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(8):1624-52. PubMed ID: 25350312
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of nucleobase sequence on the proton-transfer reaction and stability of the guanine-cytosine base pair radical anion.
    Chen HY; Yeh SW; Hsu SC; Kao CL; Dong TY
    Phys Chem Chem Phys; 2011 Feb; 13(7):2674-81. PubMed ID: 21152551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.