BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 26459638)

  • 1. Mitotic Golgi translocation of ERK1c is mediated by a PI4KIIIβ-14-3-3γ shuttling complex.
    Wortzel I; Hanoch T; Porat Z; Hausser A; Seger R
    J Cell Sci; 2015 Nov; 128(22):4083-95. PubMed ID: 26459638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ERK1c regulates Golgi fragmentation during mitosis.
    Shaul YD; Seger R
    J Cell Biol; 2006 Mar; 172(6):885-97. PubMed ID: 16533948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific phosphorylation and activation of ERK1c by MEK1b: a unique route in the ERK cascade.
    Shaul YD; Gibor G; Plotnikov A; Seger R
    Genes Dev; 2009 Aug; 23(15):1779-90. PubMed ID: 19651986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitotic HOOK3 phosphorylation by ERK1c drives microtubule-dependent Golgi destabilization and fragmentation.
    Wortzel I; Maik-Rachline G; Yadav SS; Hanoch T; Seger R
    iScience; 2021 Jun; 24(6):102670. PubMed ID: 34189435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular signal-regulated kinase 1c (ERK1c), a novel 42-kilodalton ERK, demonstrates unique modes of regulation, localization, and function.
    Aebersold DM; Shaul YD; Yung Y; Yarom N; Yao Z; Hanoch T; Seger R
    Mol Cell Biol; 2004 Nov; 24(22):10000-15. PubMed ID: 15509801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CaMKKβ-AMPKα2 signaling contributes to mitotic Golgi fragmentation and the G2/M transition in mammalian cells.
    Lee IJ; Lee CW; Lee JH
    Cell Cycle; 2015; 14(4):598-611. PubMed ID: 25590814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MEK1 inactivates Myt1 to regulate Golgi membrane fragmentation and mitotic entry in mammalian cells.
    Villeneuve J; Scarpa M; Ortega-Bellido M; Malhotra V
    EMBO J; 2013 Jan; 32(1):72-85. PubMed ID: 23241949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAF1-activated MEK1 is found on the Golgi apparatus in late prophase and is required for Golgi complex fragmentation in mitosis.
    Colanzi A; Sutterlin C; Malhotra V
    J Cell Biol; 2003 Apr; 161(1):27-32. PubMed ID: 12695496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ.
    Pagliuso A; Valente C; Giordano LL; Filograna A; Li G; Circolo D; Turacchio G; Marzullo VM; Mandrich L; Zhukovsky MA; Formiggini F; Polishchuk RS; Corda D; Luini A
    Nat Commun; 2016 Jul; 7():12148. PubMed ID: 27401954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PKD controls mitotic Golgi complex fragmentation through a Raf-MEK1 pathway.
    Kienzle C; Eisler SA; Villeneuve J; Brummer T; Olayioye MA; Hausser A
    Mol Biol Cell; 2013 Feb; 24(3):222-33. PubMed ID: 23242995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative Splicing of MAPKs in the Regulation of Signaling Specificity.
    Maik-Rachline G; Wortzel I; Seger R
    Cells; 2021 Dec; 10(12):. PubMed ID: 34943973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assays to Study the Fragmentation of the Golgi Complex During the G2-M Transition of the Cell Cycle.
    Ayala I; Colanzi A
    Methods Mol Biol; 2016; 1496():173-85. PubMed ID: 27632010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Golgi complex fragmentation in G2/M transition: An organelle-based cell-cycle checkpoint.
    Corda D; Barretta ML; Cervigni RI; Colanzi A
    IUBMB Life; 2012 Aug; 64(8):661-70. PubMed ID: 22730233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 14-3-3γ dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIβ to regulate post-Golgi carrier formation.
    Valente C; Turacchio G; Mariggiò S; Pagliuso A; Gaibisso R; Di Tullio G; Santoro M; Formiggini F; Spanò S; Piccini D; Polishchuk RS; Colanzi A; Luini A; Corda D
    Nat Cell Biol; 2012 Feb; 14(4):343-54. PubMed ID: 22366688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JNK2 controls fragmentation of the Golgi complex and the G2/M transition through phosphorylation of GRASP65.
    Cervigni RI; Bonavita R; Barretta ML; Spano D; Ayala I; Nakamura N; Corda D; Colanzi A
    J Cell Sci; 2015 Jun; 128(12):2249-60. PubMed ID: 25948586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMPK phosphorylates GBF1 for mitotic Golgi disassembly.
    Mao L; Li N; Guo Y; Xu X; Gao L; Xu Y; Zhou L; Liu W
    J Cell Sci; 2013 Mar; 126(Pt 6):1498-505. PubMed ID: 23418352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitogen-activated protein kinase kinase 1-dependent Golgi unlinking occurs in G2 phase and promotes the G2/M cell cycle transition.
    Feinstein TN; Linstedt AD
    Mol Biol Cell; 2007 Feb; 18(2):594-604. PubMed ID: 17182854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GRASP65 controls Golgi position and structure during G2/M transition by regulating the stability of microtubules.
    Ayala I; Crispino R; Colanzi A
    Traffic; 2019 Oct; 20(10):785-802. PubMed ID: 31336000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamic subcellular localization of ERK: mechanisms of translocation and role in various organelles.
    Wainstein E; Seger R
    Curr Opin Cell Biol; 2016 Apr; 39():15-20. PubMed ID: 26827288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitosis controls the Golgi and the Golgi controls mitosis.
    Colanzi A; Corda D
    Curr Opin Cell Biol; 2007 Aug; 19(4):386-93. PubMed ID: 17689238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.