BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26459824)

  • 1. Total Cyanide Field Spikes for Industrial Wastewater Samples Verify Successful Sample Integrity, Preservation, Pre-Treatment and Testing.
    Delaney MF; Blodget C
    Water Environ Res; 2015 Jun; 87(6):559-66. PubMed ID: 26459824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process.
    Pueyo N; Miguel N; Ovelleiro JL; Ormad MP
    Water Sci Technol; 2016; 74(2):482-90. PubMed ID: 27438254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persulfate enhanced electrochemical oxidation of highly toxic cyanide-containing organic wastewater using boron-doped diamond anode.
    Yang W; Liu G; Chen Y; Miao D; Wei Q; Li H; Ma L; Zhou K; Liu L; Yu Z
    Chemosphere; 2020 Aug; 252():126499. PubMed ID: 32224356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated biological approach for treatment of cyanidation wastewater.
    Mekuto L; Ntwampe SK; Akcil A
    Sci Total Environ; 2016 Nov; 571():711-20. PubMed ID: 27424119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of cyanide from acrylonitrile wastewater using gas membrane.
    Wu J; Wang J; Liu H; He S; Huang X
    Water Sci Technol; 2011; 64(11):2274-81. PubMed ID: 22156133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effect of the presence of suspended and dissolved matter on the removal of cyanide from coking wastewater by TiO
    Pueyo N; Miguel N; Mosteo R; Ovelleiro JL; Ormad MP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jan; 52(2):182-188. PubMed ID: 27791477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultratrace determination of total and available cyanides in industrial wastewaters through a rapid headspace-based sample preparation and gas chromatography with nitrogen phosphorous detection analysis.
    Marton D; Tapparo A; Di Marco VB; Repice C; Giorio C; Bogialli S
    J Chromatogr A; 2013 Jul; 1300():209-16. PubMed ID: 23522617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility.
    Park D; Lee DS; Kim YM; Park JM
    Bioresour Technol; 2008 Apr; 99(6):2092-6. PubMed ID: 17513106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation and testing of analytical methods for cyanide species in municipal and industrial contaminated waters.
    Zheng A; Dzomba DA; Luthy RG; Sawyer B; Lazouskas W; Tata P; Delaney MF; Zilitinkevitch L; Sebroski JR; Swartling RS; Drop SM; Flaherty JM
    Environ Sci Technol; 2003 Jan; 37(1):107-15. PubMed ID: 12542298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient treatment of an electroplating wastewater containing heavy metal ions, cyanide, and organics by H2O2 oxidation followed by the anodic Fenton process.
    Zhao X; Wang H; Chen F; Mao R; Liu H; Qu J
    Water Sci Technol; 2013; 68(6):1329-35. PubMed ID: 24056431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selecting an appropriate method to remove cyanide from the wastewater of Moteh gold mine using a mathematical approach.
    Seyyed Alizadeh Ganji SM; Hayati M
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23357-23369. PubMed ID: 29872984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of a synthetic solution of galvanization effluent via the conversion of sodium cyanide into an insoluble safe complex.
    Ismail I; Abdel-Monem N; Fateen SE; Abdelazeem W
    J Hazard Mater; 2009 Jul; 166(2-3):978-83. PubMed ID: 19135781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative characterization of cyanide-containing steel industrial wastewater.
    Mondal A; Sarkar S; Nair UG
    Water Sci Technol; 2021 Jan; 83(2):322-330. PubMed ID: 33504697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of cyanide, aniline and phenol in pre-treated coke oven wastewater by peroxide assisted electro-oxidation process.
    Singh H; Mishra BK
    Water Sci Technol; 2018 Dec; 78(10):2214-2227. PubMed ID: 30629549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights to false positive total cyanide measurements in wastewater plant effluents.
    Weinberg HS; Cook SJ; Singer PC
    Water Environ Res; 2005; 77(5):491-9. PubMed ID: 16274083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyanide removal from cassava mill wastewater using Azotobactor vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system.
    Kaewkannetra P; Imai T; Garcia-Garcia FJ; Chiu TY
    J Hazard Mater; 2009 Dec; 172(1):224-8. PubMed ID: 19632039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.
    Xue JQ; Liu NN; Li GP; Dang LT
    Water Sci Technol; 2016; 74(4):779-86. PubMed ID: 27533852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Operating conditions for the continuous bioremediation of free cyanide contaminated wastewater using Aspergillus awamori.
    Santos BA; Ntwampe SK; Doughari JH; Muchatibaya G
    Water Sci Technol; 2014; 69(5):989-93. PubMed ID: 24622547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of industrial wastewater by clustering wastewater treatment plant influent ultraviolet visible spectra.
    Dürrenmatt DJ; Gujer W
    Water Sci Technol; 2011; 63(6):1153-9. PubMed ID: 21436550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion chromatography as highly suitable method for rapid and accurate determination of antibiotic fosfomycin in pharmaceutical wastewater.
    Zeng P; Xie X; Song Y; Liu R; Zhu C; Galarneau A; Pic JS
    Water Sci Technol; 2014; 69(10):2014-22. PubMed ID: 24845315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.