These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 26459902)
1. Cooccurrence of Multiple AmpC β-Lactamases in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis in Tunisia. Chérif T; Saidani M; Decré D; Boutiba-Ben Boubaker I; Arlet G Antimicrob Agents Chemother; 2016 Jan; 60(1):44-51. PubMed ID: 26459902 [TBL] [Abstract][Full Text] [Related]
2. A simple phenotypic method for differentiation between acquired and chromosomal AmpC beta-lactamases in Escherichia coli. Mirelis B; Rivera A; Miró E; Mesa RJ; Navarro F; Coll P Enferm Infecc Microbiol Clin; 2006; 24(6):370-2. PubMed ID: 16792938 [TBL] [Abstract][Full Text] [Related]
3. Prevalence and resistance patterns of extended-spectrum and AmpC β-lactamase in Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Salmonella serovar Stanley in a Korean tertiary hospital. Park SD; Uh Y; Lee G; Lim K; Kim JB; Jeong SH APMIS; 2010 Oct; 118(10):801-8. PubMed ID: 20854475 [TBL] [Abstract][Full Text] [Related]
4. Evolving beta-lactamase epidemiology in Enterobacteriaceae from Italian nationwide surveillance, October 2013: KPC-carbapenemase spreading among outpatients. Giani T; Antonelli A; Caltagirone M; Mauri C; Nicchi J; Arena F; Nucleo E; Bracco S; Pantosti A; ; Luzzaro F; Pagani L; Rossolini GM Euro Surveill; 2017 Aug; 22(31):. PubMed ID: 28797330 [TBL] [Abstract][Full Text] [Related]
5. Detection of plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis. Tan TY; Ng SY; Teo L; Koh Y; Teok CH J Clin Pathol; 2008 May; 61(5):642-4. PubMed ID: 18057079 [TBL] [Abstract][Full Text] [Related]
6. An Increase in the clinical isolation of acquired AmpC β-lactamase-producing Klebsiella pneumoniae in Korea from 2007 to 2010. Park MJ; Kim TK; Song W; Kim JS; Kim HS; Lee J Ann Lab Med; 2013 Sep; 33(5):353-5. PubMed ID: 24003426 [TBL] [Abstract][Full Text] [Related]
7. Prevalence study of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking inducible ampC from Saudi hospitals. Abdalhamid B; Albunayan S; Shaikh A; Elhadi N; Aljindan R J Med Microbiol; 2017 Sep; 66(9):1286-1290. PubMed ID: 28820112 [TBL] [Abstract][Full Text] [Related]
8. [Characteristic of fluoroquinolone resistant clinical isolates of K. pneumoniae, P. mirabilis and E. coli producing ESBL and AmpC beta-lactamases]. Rzeczkowska M; Piekarska K; Gierczyński R Med Dosw Mikrobiol; 2012; 64(4):285-95. PubMed ID: 23484420 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a double synergy differential test (DSDT) for differential detection of ESBL and AmpC-type β-lactamases in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis. Sabia C; Gargiulo R; Sarti M New Microbiol; 2012 Apr; 35(2):221-5. PubMed ID: 22707136 [TBL] [Abstract][Full Text] [Related]
10. High prevalence of CTX-M-15 and first report of CTX-M-3, CTX-M-22, CTX-M-28 and plasmid-mediated AmpC beta-lactamase producing Enterobacteriaceae causing urinary tract infections in Bosnia and Herzegovina in hospital and community settings. Ibrahimagić A; Bedenić B; Kamberović F; Uzunović S J Infect Chemother; 2015 May; 21(5):363-9. PubMed ID: 25638292 [TBL] [Abstract][Full Text] [Related]
11. Laboratory surveillance for prospective plasmid-mediated AmpC beta-lactamases in the Kinki region of Japan. Yamasaki K; Komatsu M; Abe N; Fukuda S; Miyamoto Y; Higuchi T; Ono T; Nishio H; Sueyoshi N; Kida K; Satoh K; Toyokawa M; Nishi I; Sakamoto M; Akagi M; Nakai I; Kofuku T; Orita T; Wada Y; Jikimoto T; Kinoshita S; Miyamoto K; Hirai I; Yamamoto Y J Clin Microbiol; 2010 Sep; 48(9):3267-73. PubMed ID: 20610688 [TBL] [Abstract][Full Text] [Related]
12. Evolution of acquired resistance to third-generation cephalosporins in Enterobacteriaceae in a Tunisian hospital 1993-2001. Boutiba-Ben Boubaker I; Ghozzi R; Ben Abdallah H; Mamlouk K; Kamoun A; Ben Redjeb S Clin Microbiol Infect; 2004 Jul; 10(7):665-7. PubMed ID: 15214883 [TBL] [Abstract][Full Text] [Related]
13. In vitro activity of flomoxef and comparators against Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis producing extended-spectrum β-lactamases in China. Yang Q; Zhang H; Cheng J; Xu Z; Xu Y; Cao B; Kong H; Ni Y; Yu Y; Sun Z; Hu B; Huang W; Wang Y; Wu A; Feng X; Liao K; Shen D; Hu Z; Chu Y; Lu J; Su J; Gui B; Duan Q; Zhang S; Shao H Int J Antimicrob Agents; 2015 May; 45(5):485-90. PubMed ID: 25600890 [TBL] [Abstract][Full Text] [Related]
14. [Resistance to extended-spectrum cephalosporins in non-inducible AmpC enterobacteria: evaluation of the new MIC breakpoints]. Nastro M; Montoto Piazza L; Saposnik E; García S; Barberis C; Vay C; Rodríguez CH; Famiglietti A Rev Argent Microbiol; 2012; 44(1):30-5. PubMed ID: 22610285 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of screening methods to detect plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Tan TY; Ng LS; He J; Koh TH; Hsu LY Antimicrob Agents Chemother; 2009 Jan; 53(1):146-9. PubMed ID: 18955528 [TBL] [Abstract][Full Text] [Related]
16. Conjugative plasmidic AmpC detected in Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae human clinical isolates from Portugal. Santiago GS; Gonçalves D; da Silva Coelho I; de Mattos de Oliveira Coelho S; Neto Ferreira H Braz J Microbiol; 2020 Dec; 51(4):1807-1812. PubMed ID: 32740783 [TBL] [Abstract][Full Text] [Related]