These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 26460145)
1. Changes in soymilk during fermentation with kefir culture: oligosaccharides hydrolysis and isoflavone aglycone production. Baú TR; Garcia S; Ida EI Int J Food Sci Nutr; 2015; 66(8):845-50. PubMed ID: 26460145 [TBL] [Abstract][Full Text] [Related]
2. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. Chun J; Kim GM; Lee KW; Choi ID; Kwon GH; Park JY; Jeong SJ; Kim JS; Kim JH J Food Sci; 2007 Mar; 72(2):M39-44. PubMed ID: 17995840 [TBL] [Abstract][Full Text] [Related]
3. β-Glucosidase activity and bioconversion of isoflavones during fermentation of soymilk. Hati S; Vij S; Singh BP; Mandal S J Sci Food Agric; 2015 Jan; 95(1):216-20. PubMed ID: 24838442 [TBL] [Abstract][Full Text] [Related]
4. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Chien HL; Huang HY; Chou CC Food Microbiol; 2006 Dec; 23(8):772-8. PubMed ID: 16943081 [TBL] [Abstract][Full Text] [Related]
5. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. Rekha CR; Vijayalakshmi G J Appl Microbiol; 2010 Oct; 109(4):1198-208. PubMed ID: 20477889 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the isoflavone and total phenolic contents of kefir-fermented soymilk storage and after the in vitro digestive system simulation. da Silva Fernandes M; Sanches Lima F; Rodrigues D; Handa C; Guelfi M; Garcia S; Ida EI Food Chem; 2017 Aug; 229():373-380. PubMed ID: 28372188 [TBL] [Abstract][Full Text] [Related]
7. Production of beta-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. Donkor ON; Shah NP J Food Sci; 2008 Jan; 73(1):M15-20. PubMed ID: 18211356 [TBL] [Abstract][Full Text] [Related]
8. Using of Lactobacillus and Bifidobacterium to product the isoflavone aglycones in fermented soymilk. Wei QK; Chen TR; Chen JT Int J Food Microbiol; 2007 Jun; 117(1):120-4. PubMed ID: 17477997 [TBL] [Abstract][Full Text] [Related]
9. Soymilk processing with higher isoflavone aglycone content. Baú TR; Ida EI Food Chem; 2015 Sep; 183():161-8. PubMed ID: 25863624 [TBL] [Abstract][Full Text] [Related]
10. A comparison of changes in the transformation of isoflavones in soymilk using varying concentrations of exogenous and probiotic-derived endogenous beta-glucosidases. Otieno DO; Shah NP J Appl Microbiol; 2007 Sep; 103(3):601-12. PubMed ID: 17714393 [TBL] [Abstract][Full Text] [Related]
11. Hydrolysis of isoflavone glucosides in soymilk fermented with single or mixed cultures of Lactobacillus paraplantarum KM, Weissella sp. 33, and Enterococcus faecium 35 isolated from humans. Chun J; Jeong WJ; Kim JS; Lim J; Park CS; Kwon DY; Choi I; Kim JH J Microbiol Biotechnol; 2008 Mar; 18(3):573-8. PubMed ID: 18388479 [TBL] [Abstract][Full Text] [Related]
12. Isoflavone phytoestrogen degradation in fermented soymilk with selected beta-glucosidase producing L. acidophilus strains during storage at different temperatures. Otieno DO; Ashton JF; Shah NP Int J Food Microbiol; 2007 Apr; 115(1):79-88. PubMed ID: 17174431 [TBL] [Abstract][Full Text] [Related]
13. Endogenous beta-glucosidase and beta-galactosidase activities from selected probiotic micro-organisms and their role in isoflavone biotransformation in soymilk. Otieno DO; Shah NP J Appl Microbiol; 2007 Oct; 103(4):910-7. PubMed ID: 17897193 [TBL] [Abstract][Full Text] [Related]
14. Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids. Tang AL; Shah NP; Wilcox G; Walker KZ; Stojanovska L J Food Sci; 2007 Nov; 72(9):M431-6. PubMed ID: 18034738 [TBL] [Abstract][Full Text] [Related]
15. Enrichment of two isoflavone aglycones in black soymilk by Rhizopus oligosporus NTU 5 in a plastic composite support bioreactor. Liu CT; Erh MH; Lin SP; Lo KY; Chen KI; Cheng KC J Sci Food Agric; 2016 Aug; 96(11):3779-86. PubMed ID: 26676892 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the biotransformation of isoflavones in soymilk supplemented with lactose using probiotic bacteria during extended fermentation. Ding WK; Shah NP J Food Sci; 2010 Apr; 75(3):M140-9. PubMed ID: 20492303 [TBL] [Abstract][Full Text] [Related]
17. Reduction of non-digestible oligosaccharides in soymilk: application of engineered lactic acid bacteria that produce alpha-galactosidase. LeBlanc JG; Silvestroni A; Connes C; Juillard V; de Giori GS; Piard JC; Sesma F Genet Mol Res; 2004 Sep; 3(3):432-40. PubMed ID: 15614733 [TBL] [Abstract][Full Text] [Related]
18. Isoflavone phytoestrogens in soymilk fermented with β-glucosidase producing probiotic lactic acid bacteria. Rekha CR; Vijayalakshmi G Int J Food Sci Nutr; 2011 Mar; 62(2):111-20. PubMed ID: 21091296 [TBL] [Abstract][Full Text] [Related]
19. Biomolecules and nutritional quality of soymilk fermented with probiotic yeast and bacteria. Rekha CR; Vijayalakshmi G Appl Biochem Biotechnol; 2008 Dec; 151(2-3):452-63. PubMed ID: 18607548 [TBL] [Abstract][Full Text] [Related]