These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26460464)

  • 1. Evaluation of a Full-Scale Water-Based Scrubber for Removing Siloxanes from Digester Gas: A Case Study.
    Surita SC; Tansel B
    Water Environ Res; 2015 May; 87(5):444-9. PubMed ID: 26460464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectivity and limitations of carbon sorption tubes for capturing siloxanes in biogas during field sampling.
    Tansel B; Surita SC
    Waste Manag; 2016 Jun; 52():122-9. PubMed ID: 27055363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic release of siloxanes in the form of biogas from simulated municipal-solid-waste landfill and the corresponding driving mechanism.
    Kong Q; He J; Chen H; Zhou D; Yu C; Zhang Z; Yao J; Shen D
    Waste Manag; 2024 Jul; 184():101-108. PubMed ID: 38810395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations.
    Tansel B; Surita SC
    Waste Manag; 2014 Nov; 34(11):2271-7. PubMed ID: 25160660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using mechanisms of hydrolysis and sorption to reduce siloxanes occurrence in biogas of anaerobic sludge digesters.
    Gatidou G; Arvaniti OS; Stasinakis AS; Thomaidis NS; Andersen HR
    Bioresour Technol; 2016 Dec; 221():205-213. PubMed ID: 27639673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of volatile methyl siloxanes in biogas and the ambient environment in a landfill.
    Wang N; Tan L; Xie L; Wang Y; Ellis T
    J Environ Sci (China); 2020 May; 91():54-61. PubMed ID: 32172982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of cyclic and linear siloxanes in indoor air from Albany, New York, USA, and its implications for inhalation exposure.
    Tran TM; Kannan K
    Sci Total Environ; 2015 Apr; 511():138-44. PubMed ID: 25540848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Junge relationships in measurement data for cyclic siloxanes in air.
    MacLeod M; Kierkegaard A; Genualdi S; Harner T; Scheringer M
    Chemosphere; 2013 Oct; 93(5):830-4. PubMed ID: 23177712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of siloxanes in silicone products and potential migration to milk, formula and liquid simulants.
    Zhang K; Wong JW; Begley TH; Hayward DG; Limm W
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012 Aug; 29(8):1311-21. PubMed ID: 22575024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence and seasonality of cyclic volatile methyl siloxanes in Arctic air.
    Krogseth IS; Kierkegaard A; McLachlan MS; Breivik K; Hansen KM; Schlabach M
    Environ Sci Technol; 2013 Jan; 47(1):502-9. PubMed ID: 23194257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relevance of an organic solvent for absorption of siloxanes.
    Ghorbel L; Tatin R; Couvert A
    Environ Technol; 2014; 35(1-4):372-82. PubMed ID: 24600877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic siloxanes in air, including identification of high levels in Chicago and distinct diurnal variation.
    Yucuis RA; Stanier CO; Hornbuckle KC
    Chemosphere; 2013 Aug; 92(8):905-10. PubMed ID: 23541357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of siloxanes during biogas combustion and nanotoxicity of Si-based particles released to the atmosphere.
    Tansel B; Surita SC
    Environ Toxicol Pharmacol; 2014 Jan; 37(1):166-73. PubMed ID: 24355797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence and fate of volatile siloxanes in a municipal wastewater treatment plant of Beijing, China.
    Xu L; Shi Y; Cai Y
    Water Res; 2013 Feb; 47(2):715-24. PubMed ID: 23182664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multiphase analysis of partitioning and hazard index characteristics of siloxanes in biosolids.
    Surita SC; Tansel B
    Ecotoxicol Environ Saf; 2014 Apr; 102():79-83. PubMed ID: 24580825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal and determination of trimethylsilanol from the landfill gas.
    Piechota G; Hagmann M; Buczkowski R
    Bioresour Technol; 2012 Jan; 103(1):16-20. PubMed ID: 22033372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological removal of siloxanes from landfill and digester gases: opportunities and challenges.
    Popat SC; Deshusses MA
    Environ Sci Technol; 2008 Nov; 42(22):8510-5. PubMed ID: 19068840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The consequences of overcoming the human skin barrier by siloxanes (silicones) Part 1. Penetration and permeation depth study of cyclic methyl siloxanes.
    Krenczkowska D; Mojsiewicz-Pieńkowska K; Wielgomas B; Cal K; Bartoszewski R; Bartoszewska S; Jankowski Z
    Chemosphere; 2019 Sep; 231():607-623. PubMed ID: 30292575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From the shop to the drain - Volatile methylsiloxanes in cosmetics and personal care products.
    Capela D; Alves A; Homem V; Santos L
    Environ Int; 2016; 92-93():50-62. PubMed ID: 27058927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trophic transfer of methyl siloxanes in the marine food web from coastal area of Northern China.
    Jia H; Zhang Z; Wang C; Hong WJ; Sun Y; Li YF
    Environ Sci Technol; 2015 Mar; 49(5):2833-40. PubMed ID: 25625298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.