BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 26460542)

  • 1. Complementary control of sensory adaptation by two types of cortical interneurons.
    Natan RG; Briguglio JJ; Mwilambwe-Tshilobo L; Jones SI; Aizenberg M; Goldberg EM; Geffen MN
    Elife; 2015 Oct; 4():. PubMed ID: 26460542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific Early and Late Oddball-Evoked Responses in Excitatory and Inhibitory Neurons of Mouse Auditory Cortex.
    Chen IW; Helmchen F; Lütcke H
    J Neurosci; 2015 Sep; 35(36):12560-73. PubMed ID: 26354921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical Interneurons Differentially Shape Frequency Tuning following Adaptation.
    Natan RG; Rao W; Geffen MN
    Cell Rep; 2017 Oct; 21(4):878-890. PubMed ID: 29069595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory cortex shapes sound responses in the inferior colliculus.
    Blackwell JM; Lesicko AM; Rao W; De Biasi M; Geffen MN
    Elife; 2020 Jan; 9():. PubMed ID: 32003747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Short-Term Plasticity of PV and SST Neurons Accounts for Adaptation and Facilitation of Cortical Neurons to Auditory Tones.
    Seay MJ; Natan RG; Geffen MN; Buonomano DV
    J Neurosci; 2020 Nov; 40(48):9224-9235. PubMed ID: 33097639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Context-Dependent Inhibitory Control of Stimulus-Specific Adaptation.
    Yarden TS; Mizrahi A; Nelken I
    J Neurosci; 2022 Jun; 42(23):4629-4651. PubMed ID: 35477904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A circuit model of auditory cortex.
    Park Y; Geffen MN
    PLoS Comput Biol; 2020 Jul; 16(7):e1008016. PubMed ID: 32716912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network-Level Control of Frequency Tuning in Auditory Cortex.
    Kato HK; Asinof SK; Isaacson JS
    Neuron; 2017 Jul; 95(2):412-423.e4. PubMed ID: 28689982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrast gain control occurs independently of both parvalbumin-positive interneuron activity and shunting inhibition in auditory cortex.
    Cooke JE; Kahn MC; Mann EO; King AJ; Schnupp JWH; Willmore BDB
    J Neurophysiol; 2020 Apr; 123(4):1536-1551. PubMed ID: 32186432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical Neural Activity Predicts Sensory Acuity Under Optogenetic Manipulation.
    Briguglio JJ; Aizenberg M; Balasubramanian V; Geffen MN
    J Neurosci; 2018 Feb; 38(8):2094-2105. PubMed ID: 29367406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons.
    Aizenberg M; Mwilambwe-Tshilobo L; Briguglio JJ; Natan RG; Geffen MN
    PLoS Biol; 2015 Dec; 13(12):e1002308. PubMed ID: 26629746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical Interneurons Differentially Regulate the Effects of Acoustic Context.
    Phillips EAK; Schreiner CE; Hasenstaub AR
    Cell Rep; 2017 Jul; 20(4):771-778. PubMed ID: 28746863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus-specific adaptation in field potentials and neuronal responses to frequency-modulated tones in the primary auditory cortex.
    Klein C; von der Behrens W; Gaese BH
    Brain Topogr; 2014 Jul; 27(4):599-610. PubMed ID: 24863565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained Activation of PV+ Interneurons in Core Auditory Cortex Enables Robust Divisive Gain Control for Complex and Naturalistic Stimuli.
    Gothner T; Gonçalves PJ; Sahani M; Linden JF; Hildebrandt KJ
    Cereb Cortex; 2021 Mar; 31(5):2364-2381. PubMed ID: 33300581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Neural Adaptation in Auditory Cortex.
    Kudela P; Boatman-Reich D; Beeman D; Anderson WS
    Front Neural Circuits; 2018; 12():72. PubMed ID: 30233332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Across-ear stimulus-specific adaptation in the auditory cortex.
    Xu X; Yu X; He J; Nelken I
    Front Neural Circuits; 2014; 8():89. PubMed ID: 25126058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulus-specific adaptation to behaviorally-relevant sounds in awake rats.
    Yaron A; Jankowski MM; Badrieh R; Nelken I
    PLoS One; 2020; 15(3):e0221541. PubMed ID: 32210448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Somatostatin-Expressing Interneurons in the Auditory Cortex Mediate Sustained Suppression by Spectral Surround.
    Lakunina AA; Nardoci MB; Ahmadian Y; Jaramillo S
    J Neurosci; 2020 Apr; 40(18):3564-3575. PubMed ID: 32220950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fear Learning Regulates Cortical Sensory Representations by Suppressing Habituation.
    Gillet SN; Kato HK; Justen MA; Lai M; Isaacson JS
    Front Neural Circuits; 2017; 11():112. PubMed ID: 29375323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview of stimulus-specific adaptation in the auditory thalamus.
    Antunes FM; Malmierca MS
    Brain Topogr; 2014 Jul; 27(4):480-99. PubMed ID: 24343247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.