These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 26460632)

  • 1. Modeling Intermittent Cycling Performance in Hypoxia Using the Critical Power Concept.
    Shearman S; Dwyer D; Skiba P; Townsend N
    Med Sci Sports Exerc; 2016 Mar; 48(3):527-35. PubMed ID: 26460632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the Recovery of W' in the Moderate to Heavy Exercise Intensity Domain.
    Sreedhara VSM; Ashtiani F; Mocko GM; Vahidi A; Hutchison RE
    Med Sci Sports Exerc; 2020 Dec; 52(12):2646-2654. PubMed ID: 32555021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a novel intermittent w' model for cycling using field data.
    Skiba PF; Clarke D; Vanhatalo A; Jones AM
    Int J Sports Physiol Perform; 2014 Nov; 9(6):900-4. PubMed ID: 24509723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of hypoxia on the power-duration relationship during high-intensity exercise.
    Simpson LP; Jones AM; Skiba PF; Vanhatalo A; Wilkerson D
    Int J Sports Med; 2015 Feb; 36(2):113-9. PubMed ID: 25329429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of work and recovery durations on W' reconstitution during intermittent exercise.
    Skiba PF; Jackman S; Clarke D; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2014 Jul; 46(7):1433-40. PubMed ID: 24492634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of inter-trial recovery times for the determination of critical power and W' in cycling.
    Karsten B; Hopker J; Jobson SA; Baker J; Petrigna L; Klose A; Beedie C
    J Sports Sci; 2017 Jul; 35(14):1420-1425. PubMed ID: 27531664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical Power in Laboratory and Field Conditions Using Single-visit Maximal Effort Trials.
    Triska C; Tschan H; Tazreiter G; Nimmerichter A
    Int J Sports Med; 2015 Nov; 36(13):1063-8. PubMed ID: 26258826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Critical Power and W' in Hypoxia: Application to Work-Balance Modelling.
    Townsend NE; Nichols DS; Skiba PF; Racinais S; Périard JD
    Front Physiol; 2017; 8():180. PubMed ID: 28386237
    [No Abstract]   [Full Text] [Related]  

  • 9. Determinants of curvature constant (W') of the power duration relationship under normoxia and hypoxia: the effect of pre-exercise alkalosis.
    Deb SK; Gough LA; Sparks SA; McNaughton LR
    Eur J Appl Physiol; 2017 May; 117(5):901-912. PubMed ID: 28280973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Critical Power in Elite Cyclists: Questioning the Validity of the 3-Minute All-Out Test.
    Bartram JC; Thewlis D; Martin DT; Norton KI
    Int J Sports Physiol Perform; 2017 Jul; 12(6):783-787. PubMed ID: 27834562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of pacing strategy on work done above critical power during high-intensity exercise.
    Chidnok W; Dimenna FJ; Bailey SJ; Wilkerson DP; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2013 Jul; 45(7):1377-85. PubMed ID: 23377832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. W' expenditure and reconstitution during severe intensity constant power exercise: mechanistic insight into the determinants of W'.
    Broxterman RM; Skiba PF; Craig JC; Wilcox SL; Ade CJ; Barstow TJ
    Physiol Rep; 2016 Oct; 4(19):. PubMed ID: 27688431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of priming exercise on VO2 kinetics and the power-duration relationship.
    Burnley M; Davison G; Baker JR
    Med Sci Sports Exerc; 2011 Nov; 43(11):2171-9. PubMed ID: 21552161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. W' Recovery Kinetics after Exhaustion: A Two-Phase Exponential Process Influenced by Aerobic Fitness.
    Caen K; Bourgois G; Dauwe C; Blancquaert L; Vermeire K; Lievens E; VAN Dorpe JO; Derave W; Bourgois JG; Pringels L; Boone J
    Med Sci Sports Exerc; 2021 Sep; 53(9):1911-1921. PubMed ID: 33787532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Critical Power and W' Derived From 2 or 3 Maximal Tests.
    Simpson LP; Kordi M
    Int J Sports Physiol Perform; 2017 Jul; 12(6):825-830. PubMed ID: 27918663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical power: How different protocols and models affect its determination.
    Mattioni Maturana F; Fontana FY; Pogliaghi S; Passfield L; Murias JM
    J Sci Med Sport; 2018 Jul; 21(7):742-747. PubMed ID: 29203319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics.
    Karsten B; Baker J; Naclerio F; Klose A; Bianco A; Nimmerichter A
    Int J Sports Physiol Perform; 2018 Feb; 13(2):183-188. PubMed ID: 28530476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulated moderate hypoxia reduces intermittent sprint performance in games players.
    Turner G; Gibson OR; Maxwell NS
    J Sports Med Phys Fitness; 2014 Oct; 54(5):566-74. PubMed ID: 25270776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. W' Reconstitution Accelerates More with Decreasing Intensity in the Heavy- versus the Moderate-Intensity Domain.
    Lievens M; Caen K; Bourgois JG; Vermeire K; Boone J
    Med Sci Sports Exerc; 2021 Jun; 53(6):1276-1284. PubMed ID: 33273271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The constant work rate critical power protocol overestimates ramp incremental exercise performance.
    Black MI; Jones AM; Kelly JA; Bailey SJ; Vanhatalo A
    Eur J Appl Physiol; 2016 Dec; 116(11-12):2415-2422. PubMed ID: 27787608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.