These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 26461329)

  • 1. Effect of novel 1-phenyl-3-methyl-4-acylpyrazolones on iron chelation and Fenton reaction.
    Filipský T; Mladenka P; Macáková K; Hrdina R; Saso L; Marchetti F; Pettinari C
    Free Radic Biol Med; 2014 Oct; 75 Suppl 1():S29-30. PubMed ID: 26461329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro characteristics of 1-phenyl-3-methyl-4-acylpyrazol-5-ones iron chelators.
    Filipský T; Mladěnka P; Macáková K; Hrdina R; Saso L; Marchetti F; Pettinari C
    Biochimie; 2012 Jan; 94(1):125-31. PubMed ID: 21986369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro interactions of coumarins with iron.
    Mladenka P; Macáková K; Zatloukalová L; Reháková Z; Singh BK; Prasad AK; Parmar VS; Jahodár L; Hrdina R; Saso L
    Biochimie; 2010 Sep; 92(9):1108-14. PubMed ID: 20381579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone.
    Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ
    Free Radic Biol Med; 2015 Jan; 78():118-22. PubMed ID: 25451643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators.
    Welch KD; Davis TZ; Aust SD
    Arch Biochem Biophys; 2002 Jan; 397(2):360-9. PubMed ID: 11795895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane permeability of redox active metal chelators: an important element in reducing hydroxyl radical induced NAD+ depletion in neuronal cells.
    Jayasena T; Grant RS; Keerthisinghe N; Solaja I; Smythe GA
    Neurosci Res; 2007 Mar; 57(3):454-61. PubMed ID: 17210195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fenton chemistry and iron chelation under physiologically relevant conditions: Electrochemistry and kinetics.
    Merkofer M; Kissner R; Hider RC; Brunk UT; Koppenol WH
    Chem Res Toxicol; 2006 Oct; 19(10):1263-9. PubMed ID: 17040095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron chelators for the treatment of iron overload disease: relationship between structure, redox activity, and toxicity.
    Chaston TB; Richardson DR
    Am J Hematol; 2003 Jul; 73(3):200-10. PubMed ID: 12827659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New synthetic approach and iron chelating studies of 1-alkyl-2-methyl-3-hydroxypyrid-4-ones.
    Kontoghiorghes GJ; Sheppard L; Chambers S
    Arzneimittelforschung; 1987 Oct; 37(10):1099-102. PubMed ID: 3435580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for production of hydroxyl radicals by pentachlorophenol metabolites and hydrogen peroxide: A metal-independent organic Fenton reaction.
    Zhu BZ; Kitrossky N; Chevion M
    Biochem Biophys Res Commun; 2000 Apr; 270(3):942-6. PubMed ID: 10772930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311.
    Chaston TB; Lovejoy DB; Watts RN; Richardson DR
    Clin Cancer Res; 2003 Jan; 9(1):402-14. PubMed ID: 12538494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel bifunctional drugs targeting monoamine oxidase inhibition and iron chelation as an approach to neuroprotection in Parkinson's disease and other neurodegenerative diseases.
    Youdim MB; Fridkin M; Zheng H
    J Neural Transm (Vienna); 2004 Oct; 111(10-11):1455-71. PubMed ID: 15480846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles.
    Chen L; Ma J; Li X; Zhang J; Fang J; Guan Y; Xie P
    Environ Sci Technol; 2011 May; 45(9):3925-30. PubMed ID: 21469678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Complex Methodological Approach for the Screening of Efficient and Safe Cobalt Chelators.
    Moravcová M; Hrubša M; Lomozová Z; Catapano MC; Argento R; Jirkovský E; Kučera R; Mercolini L; Mladěnka P
    Med Chem; 2023; 19(5):495-507. PubMed ID: 36201264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fenton activity of iron(III) in the presence of deferiprone.
    Devanur LD; Neubert H; Hider RC
    J Pharm Sci; 2008 Apr; 97(4):1454-67. PubMed ID: 17724662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histological detection of catalytic ferrous iron with the selective turn-on fluorescent probe RhoNox-1 in a Fenton reaction-based rat renal carcinogenesis model.
    Mukaide T; Hattori Y; Misawa N; Funahashi S; Jiang L; Hirayama T; Nagasawa H; Toyokuni S
    Free Radic Res; 2014 Sep; 48(9):990-5. PubMed ID: 24580501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of bathophenanthrolinedisulfonic acid and ferrozine as chelators of iron(II) in reduction reactions.
    Cowart RE; Singleton FL; Hind JS
    Anal Biochem; 1993 May; 211(1):151-5. PubMed ID: 8323027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyphosphate Functions
    Beaufay F; Quarles E; Franz A; Katamanin O; Wholey WY; Jakob U
    mBio; 2020 Jul; 11(4):. PubMed ID: 32723918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotides and inorganic phosphates as potential antioxidants.
    Richter Y; Fischer B
    J Biol Inorg Chem; 2006 Nov; 11(8):1063-74. PubMed ID: 16896806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.