These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26461815)

  • 1. Influence of Intrinsic Colloid Formation on Migration of Cerium through Fractured Carbonate Rock.
    Tran EL; Klein-BenDavid O; Teutsch N; Weisbrod N
    Environ Sci Technol; 2015 Nov; 49(22):13275-82. PubMed ID: 26461815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of heteroaggregation processes between intrinsic colloids and carrier colloids on cerium(III) mobility through fractured carbonate rocks.
    Tran E; Klein Ben-David O; Teutch N; Weisbrod N
    Water Res; 2016 Sep; 100():88-97. PubMed ID: 27183207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radionuclide transport in brackish water through chalk fractures.
    Tran EL; Teutsch N; Klein-BenDavid O; Kersting AB; Zavrin M; Weisbrod N
    Water Res; 2019 Oct; 163():114886. PubMed ID: 31357014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloid-facilitated transport of
    Tran E; Zavrin M; Kersting AB; Klein-BenDavid O; Teutsch N; Weisbrod N
    Sci Total Environ; 2021 Feb; 757():143818. PubMed ID: 33246722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolved and colloidal transport of cesium in natural discrete fractures.
    Tang XY; Weisbrod N
    J Environ Qual; 2010; 39(3):1066-76. PubMed ID: 20400602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct visualization of colloid transport over natural heterogeneous and artificial smooth rock surfaces.
    Borgman O; Be'er A; Weisbrod N
    J Contam Hydrol; 2022 Dec; 251():104067. PubMed ID: 36113262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake and release of cerium during Fe-oxide formation and transformation in Fe(II) solutions.
    Nedel S; Dideriksen K; Christiansen BC; Bovet N; Stipp SL
    Environ Sci Technol; 2010 Jun; 44(12):4493-8. PubMed ID: 20496931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory migration experiments with radionuclides and natural colloids in a granite fracture.
    Vilks P; Baik MH
    J Contam Hydrol; 2001 Feb; 47(2-4):197-210. PubMed ID: 11288576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloid-facilitated transport of lead in natural discrete fractures.
    Tang XY; Weisbrod N
    Environ Pollut; 2009; 157(8-9):2266-74. PubMed ID: 19395135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hydrodynamic chromatography on colloid-facilitated migration of radionuclides in the fractured rock.
    Jen CP; Li SH
    Waste Manag; 2001; 21(6):499-509. PubMed ID: 11478617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uranium and Cesium sorption to bentonite colloids under carbonate-rich environments: Implications for radionuclide transport.
    Tran EL; Teutsch N; Klein-BenDavid O; Weisbrod N
    Sci Total Environ; 2018 Dec; 643():260-269. PubMed ID: 29936167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloid transport in dolomite rock fractures: effects of fracture characteristics, specific discharge, and ionic strength.
    Mondal PK; Sleep BE
    Environ Sci Technol; 2012 Sep; 46(18):9987-94. PubMed ID: 22891695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobility of Radionuclides in Fractured Carbonate Rocks: Lessons from a Field-Scale Transport Experiment.
    Tran EL; Reimus P; Klein-BenDavid O; Teutsch N; Zavarin M; Kersting AB; Weisbrod N
    Environ Sci Technol; 2020 Sep; 54(18):11249-11257. PubMed ID: 32786561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of actinide-distribution data obtained from non-destructive and destructive post-test analyses of an intact-core column of Culebra dolomite.
    Perkins WG; Lucero DA
    J Contam Hydrol; 2001 Feb; 47(2-4):107-16. PubMed ID: 11288568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of clay colloid and artificial microsphere transport in natural discrete fractures.
    Zvikelsky O; Weisbrod N; Dody A
    J Colloid Interface Sci; 2008 Jul; 323(2):286-92. PubMed ID: 18499118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The significance of colloids in the transport of pesticides through Chalk.
    Gooddy DC; Mathias SA; Harrison I; Lapworth DJ; Kim AW
    Sci Total Environ; 2007 Oct; 385(1-3):262-71. PubMed ID: 17673277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of colloid formation in a granite groundwater bentonite porewater mixing zone on radionuclide speciation.
    Kunze P; Seher H; Hauser W; Panak PJ; Geckeis H; Fanghänel T; Schäfer T
    J Contam Hydrol; 2008 Dec; 102(3-4):263-72. PubMed ID: 18992961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size dispersion and colloid mediated radionuclide transport in a synthetic porous media.
    Delos A; Walther C; Schäfer T; Büchner S
    J Colloid Interface Sci; 2008 Aug; 324(1-2):212-5. PubMed ID: 18514680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloid-Facilitated Plutonium Transport in Fractured Tuffaceous Rock.
    Wolfsberg A; Dai Z; Zhu L; Reimus P; Xiao T; Ware D
    Environ Sci Technol; 2017 May; 51(10):5582-5590. PubMed ID: 28418667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific retention of colloids at rough rock surfaces.
    Darbha GK; Fischer C; Luetzenkirchen J; Schäfer T
    Environ Sci Technol; 2012 Sep; 46(17):9378-87. PubMed ID: 22861645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.