These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 26462068)

  • 1. Measuring Residual Dipolar Couplings in Excited Conformational States of Nucleic Acids by CEST NMR Spectroscopy.
    Zhao B; Zhang Q
    J Am Chem Soc; 2015 Oct; 137(42):13480-3. PubMed ID: 26462068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing excited conformational states of nucleic acids by nitrogen CEST NMR spectroscopy.
    Zhao B; Baisden JT; Zhang Q
    J Magn Reson; 2020 Jan; 310():106642. PubMed ID: 31785475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing slow chemical exchange in nucleic acids by carbon CEST and low spin-lock field R(1ρ) NMR spectroscopy.
    Zhao B; Hansen AL; Zhang Q
    J Am Chem Soc; 2014 Jan; 136(1):20-3. PubMed ID: 24299272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer-Nanodiscs as a Novel Alignment Medium for High-Resolution NMR-Based Structural Studies of Nucleic Acids.
    Krishnarjuna B; Ravula T; Faison EM; Tonelli M; Zhang Q; Ramamoorthy A
    Biomolecules; 2022 Nov; 12(11):. PubMed ID: 36358983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residual dipolar couplings in NMR structure analysis.
    Lipsitz RS; Tjandra N
    Annu Rev Biophys Biomol Struct; 2004; 33():387-413. PubMed ID: 15139819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An excited state underlies gene regulation of a transcriptional riboswitch.
    Zhao B; Guffy SL; Williams B; Zhang Q
    Nat Chem Biol; 2017 Sep; 13(9):968-974. PubMed ID: 28719589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying two-bond 1HN-13CO and one-bond 1H(alpha)-13C(alpha) dipolar couplings of invisible protein states by spin-state selective relaxation dispersion NMR spectroscopy.
    Hansen DF; Vallurupalli P; Kay LE
    J Am Chem Soc; 2008 Jul; 130(26):8397-405. PubMed ID: 18528998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of static and dynamic A-form heterogeneity on the determination of RNA global structural dynamics using NMR residual dipolar couplings.
    Musselman C; Pitt SW; Gulati K; Foster LL; Andricioaei I; Al-Hashimi HM
    J Biomol NMR; 2006 Dec; 36(4):235-49. PubMed ID: 17077936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR studies of nucleic acid dynamics.
    Al-Hashimi HM
    J Magn Reson; 2013 Dec; 237():191-204. PubMed ID: 24149218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating residual dipolar couplings into the NMR solution structure determination of nucleic acids.
    Zhou H; Vermeulen A; Jucker FM; Pardi A
    Biopolymers; 1999-2000; 52(4):168-80. PubMed ID: 11295749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical shift-based methods in NMR structure determination.
    Nerli S; McShan AC; Sgourakis NG
    Prog Nucl Magn Reson Spectrosc; 2018; 106-107():1-25. PubMed ID: 31047599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of pseudocontact shifts of low-populated excited states by NMR chemical exchange saturation transfer.
    Ma RS; Li QF; Wang AD; Zhang JH; Liu ZJ; Wu JH; Su XC; Ruan K
    Phys Chem Chem Phys; 2016 May; 18(20):13794-8. PubMed ID: 27001533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periodicity in residual dipolar couplings and nucleic acid structures.
    Walsh JD; Cabello-Villegas J; Wang YX
    J Am Chem Soc; 2004 Feb; 126(7):1938-9. PubMed ID: 14971918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of proton chemical shifts in invisible states of slowly exchanging protein systems by chemical exchange saturation transfer.
    Bouvignies G; Kay LE
    J Phys Chem B; 2012 Dec; 116(49):14311-7. PubMed ID: 23194058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indirect NMR spin-spin coupling constants 3J(P,C) and 2J(P,H) across the P-O...H-C link can be used for structure determination of nucleic acids.
    Sychrovský V; Sponer J; Trantírek L; Schneider B
    J Am Chem Soc; 2006 May; 128(21):6823-8. PubMed ID: 16719462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast real-time NMR methods for characterizing short-lived molecular states.
    Rennella E; Brutscher B
    Chemphyschem; 2013 Sep; 14(13):3059-70. PubMed ID: 23857553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the accuracy of solution NMR structures of membrane proteins by application of residual dipolar couplings. High-resolution structure of outer membrane protein A.
    Cierpicki T; Liang B; Tamm LK; Bushweller JH
    J Am Chem Soc; 2006 May; 128(21):6947-51. PubMed ID: 16719475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of correlated residual dipolar couplings to the determination of the molecular alignment tensor magnitude of oriented proteins and nucleic acids.
    Bryce DL; Bax A
    J Biomol NMR; 2004 Mar; 28(3):273-87. PubMed ID: 14752260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure determination of large biological RNAs.
    Lukavsky PJ; Puglisi JD
    Methods Enzymol; 2005; 394():399-416. PubMed ID: 15808230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TROSY in NMR studies of the structure and function of large biological macromolecules.
    Fernández C; Wider G
    Curr Opin Struct Biol; 2003 Oct; 13(5):570-80. PubMed ID: 14568611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.