These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 26462177)
1. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Liu PF; Cao YW; Zhang SD; Zhao Y; Liu XG; Shi HQ; Hu KY; Zhu GQ; Ma B; Niu HT Oncotarget; 2015 Nov; 6(35):37695-705. PubMed ID: 26462177 [TBL] [Abstract][Full Text] [Related]
3. In vitro throughput screening of anticancer drugs using patient-derived cell lines cultured on vascularized three-dimensional stromal tissues. Takahashi Y; Morimura R; Tsukamoto K; Gomi S; Yamada A; Mizukami M; Naito Y; Irie S; Nagayama S; Shinozaki E; Yamaguchi K; Fujita N; Kitano S; Katayama R; Matsusaki M Acta Biomater; 2024 Jul; 183():111-129. PubMed ID: 38801868 [TBL] [Abstract][Full Text] [Related]
4. Targeting of MCT1 and PFKFB3 influences cell proliferation and apoptosis in bladder cancer by altering the tumor microenvironment. Hu KY; Wang de G; Liu PF; Cao YW; Wang YH; Yang XC; Hu CX; Sun LJ; Niu HT Oncol Rep; 2016 Aug; 36(2):945-51. PubMed ID: 27373212 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of monocarboxylate anion transporter 1 and 4 in T24-induced cancer-associated fibroblasts regulates the progression of bladder cancer cells in a 3D microfluidic device. Shi H; Jiang H; Wang L; Cao Y; Liu P; Xu X; Wang Y; Sun L; Niu H Cell Cycle; 2015; 14(19):3058-65. PubMed ID: 26125467 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional co-culture microfluidic model and its application for research on cancer stem-like cells inducing migration of endothelial cells. Zhao Y; Yan X; Li B; Ke M; Chen S; Xu Z; Cai S Biotechnol Lett; 2017 Sep; 39(9):1425-1432. PubMed ID: 28536939 [TBL] [Abstract][Full Text] [Related]
7. Bladder cancer cells re-educate TAMs through lactate shuttling in the microfluidic cancer microenvironment. Zhao Y; Wang D; Xu T; Liu P; Cao Y; Wang Y; Yang X; Xu X; Wang X; Niu H Oncotarget; 2015 Nov; 6(36):39196-210. PubMed ID: 26474279 [TBL] [Abstract][Full Text] [Related]
8. Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures. Mosaad E; Chambers K; Futrega K; Clements J; Doran MR BMC Cancer; 2018 May; 18(1):592. PubMed ID: 29793440 [TBL] [Abstract][Full Text] [Related]
9. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. Bai J; Tu TY; Kim C; Thiery JP; Kamm RD Oncotarget; 2015 Nov; 6(34):36603-14. PubMed ID: 26474384 [TBL] [Abstract][Full Text] [Related]
10. Three-Dimensional Microfluidic Tri-Culture Model of the Bone Marrow Microenvironment for Study of Acute Lymphoblastic Leukemia. Bruce A; Evans R; Mezan R; Shi L; Moses BS; Martin KH; Gibson LF; Yang Y PLoS One; 2015; 10(10):e0140506. PubMed ID: 26488876 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment. Holton AB; Sinatra FL; Kreahling J; Conway AJ; Landis DA; Altiok S PLoS One; 2017; 12(1):e0169797. PubMed ID: 28085924 [TBL] [Abstract][Full Text] [Related]
12. 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment. Rebelo SP; Pinto C; Martins TR; Harrer N; Estrada MF; Loza-Alvarez P; Cabeçadas J; Alves PM; Gualda EJ; Sommergruber W; Brito C Biomaterials; 2018 May; 163():185-197. PubMed ID: 29477032 [TBL] [Abstract][Full Text] [Related]
13. Multiwell capillarity-based microfluidic device for the study of 3D tumour tissue-2D endothelium interactions and drug screening in co-culture models. Virumbrales-Muñoz M; Ayuso JM; Olave M; Monge R; de Miguel D; Martínez-Lostao L; Le Gac S; Doblare M; Ochoa I; Fernandez LJ Sci Rep; 2017 Sep; 7(1):11998. PubMed ID: 28931839 [TBL] [Abstract][Full Text] [Related]
14. Fabrication Method of a High-Density Co-Culture Tumor-Stroma Platform to Study Cancer Progression. Saini H; Nikkhah M Methods Mol Biol; 2021; 2258():241-255. PubMed ID: 33340365 [TBL] [Abstract][Full Text] [Related]
15. Multicomponent Coculture System of Cancer Cells and Two Types of Stromal Cells for In Vitro Evaluation of Anticancer Drugs. Yamazoe H; Hagihara Y; Kobayashi H Tissue Eng Part C Methods; 2016 Jan; 22(1):20-9. PubMed ID: 26421875 [TBL] [Abstract][Full Text] [Related]
16. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Xu Z; Gao Y; Hao Y; Li E; Wang Y; Zhang J; Wang W; Gao Z; Wang Q Biomaterials; 2013 May; 34(16):4109-4117. PubMed ID: 23473962 [TBL] [Abstract][Full Text] [Related]
17. Nanoparticle modulation of the tumor microenvironment enhances therapeutic efficacy of cisplatin. Miao L; Wang Y; Lin CM; Xiong Y; Chen N; Zhang L; Kim WY; Huang L J Control Release; 2015 Nov; 217():27-41. PubMed ID: 26285063 [TBL] [Abstract][Full Text] [Related]
18. Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity. Lazzari G; Nicolas V; Matsusaki M; Akashi M; Couvreur P; Mura S Acta Biomater; 2018 Sep; 78():296-307. PubMed ID: 30099198 [TBL] [Abstract][Full Text] [Related]
19. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment. Jeong SY; Lee JH; Shin Y; Chung S; Kuh HJ PLoS One; 2016; 11(7):e0159013. PubMed ID: 27391808 [TBL] [Abstract][Full Text] [Related]
20. Quantitative study of the dynamic tumor-endothelial cell interactions through an integrated microfluidic coculture system. Zheng C; Zhao L; Chen G; Zhou Y; Pang Y; Huang Y Anal Chem; 2012 Feb; 84(4):2088-93. PubMed ID: 22263607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]