BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26462594)

  • 21. Structured carbon foam derived from waste biomass: application to endocrine disruptor adsorption.
    Zbair M; Ojala S; Khallok H; Ainassaari K; El Assal Z; Hatim Z; Keiski RL; Bensitel M; Brahmi R
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):32589-32599. PubMed ID: 31630351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of Endocrine Disrupting Chemicals from Water: Adsorption of Bisphenol-A by Biobased Hydrophobic Functionalized Cellulose.
    Tursi A; Chatzisymeon E; Chidichimo F; Beneduci A; Chidichimo G
    Int J Environ Res Public Health; 2018 Oct; 15(11):. PubMed ID: 30384467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Removal of bisphenol A and tetrabromobisphenol A membrane by nanofiltration from water source].
    Zhang Y; Hu JY; Li GZ; Causserand C; Aimar P
    Huan Jing Ke Xue; 2010 Jun; 31(6):1513-7. PubMed ID: 20698265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel Bi₁₂O₁₅Cl₆ Photocatalyst for the Degradation of Bisphenol A under Visible-Light Irradiation.
    Wang CY; Zhang X; Song XN; Wang WK; Yu HQ
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5320-6. PubMed ID: 26848924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling the physisorption of bisphenol A on graphene and graphene oxide.
    Cortés-Arriagada D; Sanhueza L; Santander-Nelli M
    J Mol Model; 2013 Sep; 19(9):3569-80. PubMed ID: 23722557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A.
    Arampatzidou AC; Deliyanni EA
    J Colloid Interface Sci; 2016 Mar; 466():101-12. PubMed ID: 26707777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenyl-functionalized magnetic palm-based powdered activated carbon for the effective removal of selected pharmaceutical and endocrine-disruptive compounds.
    Wong KT; Yoon Y; Snyder SA; Jang M
    Chemosphere; 2016 Jun; 152():71-80. PubMed ID: 26963238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption Properties of Polyethersulfone-Modified Attapulgite Hybrid Microspheres for Bisphenol A and Sulfamethoxazole.
    Yu J; Shen H; Liu B
    Int J Environ Res Public Health; 2020 Jan; 17(2):. PubMed ID: 31940746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in the adsorption of bisphenol A, 17 α-ethinyl estradiol, and phenanthrene on marine sediment in Hong Kong in relation to the simulated sediment organic matter decomposition.
    Fei YH; Xing B; Li XY
    Environ Pollut; 2014 Sep; 192():139-46. PubMed ID: 24929636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MCX based solid phase extraction combined with liquid chromatography tandem mass spectrometry for the simultaneous determination of 31 endocrine-disrupting compounds in surface water of Shanghai.
    Zhang HC; Yu XJ; Yang WC; Peng JF; Xu T; Yin DQ; Hu XL
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Oct; 879(28):2998-3004. PubMed ID: 21930438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.
    Yüksel S; Kabay N; Yüksel M
    J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Capturing hormones and bisphenol A from water via sustained hydrogen bond driven sorption in polyamide microfiltration membranes.
    Han J; Meng S; Dong Y; Hu J; Gao W
    Water Res; 2013 Jan; 47(1):197-208. PubMed ID: 23127621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent trends in biomonitoring of bisphenol A, 4-t-octylphenol, and 4-nonylphenol.
    Asimakopoulos AG; Thomaidis NS; Koupparis MA
    Toxicol Lett; 2012 Apr; 210(2):141-54. PubMed ID: 21888958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of bisphenol A to a carbon nanotube reduced its endocrine disrupting effect in mice male offspring.
    Wang W; Jiang C; Zhu L; Liang N; Liu X; Jia J; Zhang C; Zhai S; Zhang B
    Int J Mol Sci; 2014 Sep; 15(9):15981-93. PubMed ID: 25210847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analytical study of endocrine-disrupting chemicals in leachate treatment process of municipal solid waste (MSW) landfill sites.
    Asakura H; Matsuto T; Tanaka N
    Environ Sci; 2007; 14(2):79-87. PubMed ID: 17585294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: effects of reaction conditions and sludge matrix.
    Zhang A; Li Y
    Sci Total Environ; 2014 Sep; 493():307-23. PubMed ID: 24951888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene oxide coated capillary for the analysis of endocrine-disrupting chemicals by open-tubular capillary electrochromatography with amperometric detection.
    Jiang X; Jiang Y; Shi G; Zhou T
    J Sep Sci; 2014 Jul; 37(13):1671-8. PubMed ID: 24729294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of endocrine-disrupting compounds in drinking waters by fast liquid chromatography-tandem mass spectrometry.
    Magi E; Scapolla C; Di Carro M; Liscio C
    J Mass Spectrom; 2010 Sep; 45(9):1003-11. PubMed ID: 20641000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer-aided identification of novel protein targets of bisphenol A.
    Montes-Grajales D; Olivero-Verbel J
    Toxicol Lett; 2013 Oct; 222(3):312-20. PubMed ID: 23973438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. H₃PW₁₂O₄₀/TiO₂ catalyst-induced photodegradation of bisphenol A (BPA): kinetics, toxicity and degradation pathways.
    Lu N; Lu Y; Liu F; Zhao K; Yuan X; Zhao Y; Li Y; Qin H; Zhu J
    Chemosphere; 2013 May; 91(9):1266-72. PubMed ID: 23540812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.