These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 26462954)
1. Comparing Aedes vigilax Eggshell Densities in Saltmarsh and Mangrove Systems with Implications for Management. Dale P; Knight J; Griffin L Insects; 2014 Dec; 5(4):984-90. PubMed ID: 26462954 [TBL] [Abstract][Full Text] [Related]
2. Oviposition and larval habitat preferences of the saltwater mosquito, Aedes vigilax, in a subtropical mangrove forest in Queensland, Australia. Knight J; Griffin L; Dale P; Phinn S J Insect Sci; 2012; 12():6. PubMed ID: 22938052 [TBL] [Abstract][Full Text] [Related]
3. The impact of encroachment of mangroves into saltmarshes on saltwater mosquito habitats. Dale P; Eslami-Andargoli L; Knight J J Vector Ecol; 2013 Dec; 38(2):330-8. PubMed ID: 24581363 [TBL] [Abstract][Full Text] [Related]
4. Eggshells as an index of aedine mosquito production. 1: Distribution, movement and sampling of Aedes taeniorhynchus eggshells. Ritchie SA; Addison DS; van Essen F J Am Mosq Control Assoc; 1992 Mar; 8(1):32-7. PubMed ID: 1583486 [TBL] [Abstract][Full Text] [Related]
5. Performance of an aerially applied liquid Bacillus thuringiensis var. israelensis formulation (strain AM65-52) against mosquitoes in mixed saltmarsh-mangrove systems and fine-scale mapping of mangrove canopy cover using affordable drone-based imagery. Johnson BJ; Manby R; Devine GJ Pest Manag Sci; 2020 Nov; 76(11):3822-3831. PubMed ID: 32472737 [TBL] [Abstract][Full Text] [Related]
6. Spatial stability of Aedes vigilax (Diptera: Culicidae) eggshells in southeastern Queensland salt marshes. Ritchie SA J Med Entomol; 1994 Nov; 31(6):920-2. PubMed ID: 7815409 [TBL] [Abstract][Full Text] [Related]
7. A comparison of Aedes vigilax larval population densities and associated vegetation categories in a coastal wetland, Northern Territory, Australia. Jacups SP; Kurucz N; Whelan PI; Carter JM J Vector Ecol; 2009 Dec; 34(2):311-6. PubMed ID: 20836834 [TBL] [Abstract][Full Text] [Related]
8. Eggshells as an index of aedine mosquito production. 2: Relationship of Aedes taeniorhynchus eggshell density to larval production. Addison DS; Ritchie SA; Webber LA; Van Essen F J Am Mosq Control Assoc; 1992 Mar; 8(1):38-43. PubMed ID: 1583487 [TBL] [Abstract][Full Text] [Related]
9. Development of a regional climate change model for Staples K; Neville PJ; Richardson S; Oosthuizen J Bull Entomol Res; 2024 Feb; 114(1):8-21. PubMed ID: 38235528 [TBL] [Abstract][Full Text] [Related]
10. Food availability and predation risk drive the distributional patterns of two pulmonate gastropods in a mangrove-saltmarsh transitional habitat. Peng Y; Zhang M; Lee SY Mar Environ Res; 2017 Sep; 130():21-29. PubMed ID: 28712828 [TBL] [Abstract][Full Text] [Related]
11. Urban stormwater run-off promotes compression of saltmarshes by freshwater plants and mangrove forests. Geedicke I; Oldeland J; Leishman MR Sci Total Environ; 2018 Oct; 637-638():137-144. PubMed ID: 29751296 [TBL] [Abstract][Full Text] [Related]
12. Population structure and dispersal of the saltmarsh mosquito Aedes vigilax in Queensland, Australia. Chapman HF; Hughes JM; Jennings C; Kay BH; Ritchie SA Med Vet Entomol; 1999 Oct; 13(4):423-30. PubMed ID: 10608232 [TBL] [Abstract][Full Text] [Related]
13. Mosquito distribution in a saltmarsh: determinants of eggs in a variable environment. Rowbottom R; Carver S; Barmuta LA; Weinstein P; Allen GR J Vector Ecol; 2017 Jun; 42(1):161-170. PubMed ID: 28504426 [TBL] [Abstract][Full Text] [Related]
14. Foraging ranges of insectivorous bats shift relative to changes in mosquito abundance. Gonsalves L; Law B; Webb C; Monamy V PLoS One; 2013; 8(5):e64081. PubMed ID: 23667699 [TBL] [Abstract][Full Text] [Related]
15. Habitat characteristics and eggshell distribution of the salt marsh mosquito, Aedes vigilax, in marshes in subtropical Eastern Australia. Dale PE; Knight J; Kay BH; Chapman H; Ritchie SA; Brown MD J Insect Sci; 2008; 8():1-8. PubMed ID: 20233077 [TBL] [Abstract][Full Text] [Related]
17. Seventy years of continuous encroachment substantially increases 'blue carbon' capacity as mangroves replace intertidal salt marshes. Kelleway JJ; Saintilan N; Macreadie PI; Skilbeck CG; Zawadzki A; Ralph PJ Glob Chang Biol; 2016 Mar; 22(3):1097-109. PubMed ID: 26670941 [TBL] [Abstract][Full Text] [Related]
18. Saltmarsh boundary modulates dispersal of mangrove propagules: implications for mangrove migration with sea-level rise. Peterson JM; Bell SS PLoS One; 2015; 10(3):e0119128. PubMed ID: 25760867 [TBL] [Abstract][Full Text] [Related]
19. A geospatial evaluation of Aedes vigilax larval control efforts across a coastal wetland, Northern Territory, Australia. Kurucz N; Whelan PI; Carter JM; Jacups SP J Vector Ecol; 2009 Dec; 34(2):317-23. PubMed ID: 20836835 [TBL] [Abstract][Full Text] [Related]
20. How do local differences in saltmarsh ecology influence disease vector mosquito populations? Rowbottom R; Carver S; Barmuta LA; Weinstein P; Allen GR Med Vet Entomol; 2020 Sep; 34(3):279-290. PubMed ID: 32080876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]