BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26463003)

  • 1. Thermal survival limits of young and mature larvae of a cold stenothermal chironomid from the Alps (Diamesinae: Pseudodiamesa branickii [Nowicki, 1873]).
    Lencioni V; Bernabò P
    Insect Sci; 2017 Apr; 24(2):314-324. PubMed ID: 26463003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermotolerance and hsp70 heat shock response in the cold-stenothermal chironomid Pseudodiamesa branickii (NE Italy).
    Bernabò P; Rebecchi L; Jousson O; Martínez-Guitarte JL; Lencioni V
    Cell Stress Chaperones; 2011 Jul; 16(4):403-10. PubMed ID: 21188662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respiration rate and oxy-regulatory capacity in cold stenothermal chironomids.
    Lencioni V; Bernabò P; Vanin S; Di Muro P; Beltramini M
    J Insect Physiol; 2008 Sep; 54(9):1337-42. PubMed ID: 18680747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal stress induces HSP70 proteins synthesis in larvae of the cold stream non-biting midge Diamesa cinerella Meigen.
    Lencioni V; Bernabò P; Cesari M; Rebecchi L; Cesari M
    Arch Insect Biochem Physiol; 2013 May; 83(1):1-14. PubMed ID: 23404797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoperiodic and thermal regulation of development and cold hardiness in larvae of the clover leaf weevil, Hypera punctata.
    Watanabe M
    Cryobiology; 2000 Jun; 40(4):294-301. PubMed ID: 10924261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insect cold-tolerance and lipidome: Membrane lipid composition of two chironomid species differently adapted to cold.
    Trenti F; Sandron T; Guella G; Lencioni V
    Cryobiology; 2022 Jun; 106():84-90. PubMed ID: 35317992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upper lethal temperatures in three cold-tolerant insects are higher in winter than in summer.
    Vu HM; Duman JG
    J Exp Biol; 2017 Aug; 220(Pt 15):2726-2732. PubMed ID: 28768748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The overwintering biology of the acorn weevil, Curculio glandium in southwestern Ontario.
    Udaka H; Sinclair BJ
    J Therm Biol; 2014 Aug; 44():103-9. PubMed ID: 25086980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid cold hardening protects against sublethal freezing injury in an Antarctic insect.
    Teets NM; Kawarasaki Y; Potts LJ; Philip BN; Gantz JD; Denlinger DL; Lee RE
    J Exp Biol; 2019 Aug; 222(Pt 15):. PubMed ID: 31345935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low Temperature Tolerance of Culicoides sonorensis (Diptera: Ceratopogonidae) Eggs, Larvae, and Pupae From Temperate and Subtropical Climates.
    McDermott EG; Mayo CE; Mullens BA
    J Med Entomol; 2017 Mar; 54(2):264-274. PubMed ID: 28011723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of summer frost exposures on the cold tolerance strategy of a sub-Antarctic beetle.
    Bale JS; Worland MR; Block W
    J Insect Physiol; 2001 Sep; 47(10):1161-1167. PubMed ID: 12770194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica.
    Lee RE; Elnitsky MA; Rinehart JP; Hayward SA; Sandro LH; Denlinger DL
    J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overwintering biology and limits of cold tolerance in larvae of pistachio twig borer, Kermania pistaciella.
    Mollaei M; Izadi H; Šimek P; Koštál V
    Bull Entomol Res; 2016 Aug; 106(4):538-45. PubMed ID: 27063868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freezing induces a loss of freeze tolerance in an overwintering insect.
    Brown CL; Bale JS; Walters KF
    Proc Biol Sci; 2004 Jul; 271(1547):1507-11. PubMed ID: 15306323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival and energetic costs of repeated cold exposure in the Antarctic midge, Belgica antarctica: a comparison between frozen and supercooled larvae.
    Teets NM; Kawarasaki Y; Lee RE; Denlinger DL
    J Exp Biol; 2011 Mar; 214(Pt 5):806-14. PubMed ID: 21307067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surviving the Antarctic winter-Life Stage Cold Tolerance and Ice Entrapment Survival in The Invasive Chironomid Midge
    Bartlett JC; Convey P; Hayward SAL
    Insects; 2020 Feb; 11(3):. PubMed ID: 32111052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic kelp fly, Paractora dreuxi (Diptera: Helcomyzidae).
    Klok CJ; Chown SL
    J Insect Physiol; 2001 Jan; 47(1):95-109. PubMed ID: 11033171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Cold and Heat Tolerance of
    Liu H; Wang X; Chen Z; Lu Y
    Insects; 2022 Mar; 13(4):. PubMed ID: 35447771
    [No Abstract]   [Full Text] [Related]  

  • 19. [Decrease of supercooling capacity during embryogenesis and larval growth in Coleoptera].
    Vernon P; Vannier G; Luce JM
    C R Acad Sci III; 1997 May; 320(5):359-66. PubMed ID: 9239321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overwintering status and cold hardiness of hypera punctata.
    Watanabe M; Tanaka K
    Cryobiology; 1997 Nov; 35(3):270-6. PubMed ID: 9367614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.