BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26463089)

  • 1. Development of sediment load estimation models by using artificial neural networking techniques.
    Hassan M; Ali Shamim M; Sikandar A; Mehmood I; Ahmed I; Ashiq SZ; Khitab A
    Environ Monit Assess; 2015 Nov; 187(11):686. PubMed ID: 26463089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions.
    Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN
    Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States.
    Olyaie E; Banejad H; Chau KW; Melesse AM
    Environ Monit Assess; 2015 Apr; 187(4):189. PubMed ID: 25787167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ANN modelling of sediment concentration in the dynamic glacial environment of Gangotri in Himalaya.
    Singh N; Chakrapani GJ
    Environ Monit Assess; 2015 Aug; 187(8):494. PubMed ID: 26156315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capability assessment of conventional and data-driven models for prediction of suspended sediment load.
    Kumar A; Tripathi VK
    Environ Sci Pollut Res Int; 2022 Jul; 29(33):50040-50058. PubMed ID: 35226265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models.
    Rajaee T; Mirbagheri SA; Zounemat-Kermani M; Nourani V
    Sci Total Environ; 2009 Aug; 407(17):4916-27. PubMed ID: 19520419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers.
    Rajaee T
    Sci Total Environ; 2011 Jul; 409(15):2917-28. PubMed ID: 21546062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal and Spatial Simulation of Atmospheric Pollutant PM2.5 Changes and Risk Assessment of Population Exposure to Pollution Using Optimization Algorithms of the Back Propagation-Artificial Neural Network Model and GIS.
    Zhang P; Hong B; He L; Cheng F; Zhao P; Wei C; Liu Y
    Int J Environ Res Public Health; 2015 Sep; 12(10):12171-95. PubMed ID: 26426030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks.
    Gupta VK; Khani H; Ahmadi-Roudi B; Mirakhorli S; Fereyduni E; Agarwal S
    Talanta; 2011 Jan; 83(3):1014-22. PubMed ID: 21147352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of predictive models for determining enterococci levels at Gulf Coast beaches.
    Zhang Z; Deng Z; Rusch KA
    Water Res; 2012 Feb; 46(2):465-74. PubMed ID: 22130001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the performance of four different heuristic approaches with Gamma test for daily suspended sediment concentration modeling.
    Malik A; Kumar A; Kisi O; Shiri J
    Environ Sci Pollut Res Int; 2019 Aug; 26(22):22670-22687. PubMed ID: 31172434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suspended sediment load prediction using artificial neural network and ant lion optimization algorithm.
    Banadkooki FB; Ehteram M; Ahmed AN; Teo FY; Ebrahimi M; Fai CM; Huang YF; El-Shafie A
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):38094-38116. PubMed ID: 32621196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting reservoir sedimentation using multilayer perceptron - Artificial neural network model with measured and forecasted hydrometeorological data in Gibe-III reservoir, Omo-Gibe River basin, Ethiopia.
    Lukas P; Melesse AM; Kenea TT
    J Environ Manage; 2024 May; 359():121018. PubMed ID: 38714033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward multi-day-ahead forecasting of suspended sediment concentration using ensemble models.
    Alizadeh MJ; Jafari Nodoushan E; Kalarestaghi N; Chau KW
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):28017-28025. PubMed ID: 28993996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear and nonlinear modeling approaches for urban air quality prediction.
    Singh KP; Gupta S; Kumar A; Shukla SP
    Sci Total Environ; 2012 Jun; 426():244-55. PubMed ID: 22542239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random forest, support vector machine, and neural networks to modelling suspended sediment in Tigris River-Baghdad.
    Al-Mukhtar M
    Environ Monit Assess; 2019 Oct; 191(11):673. PubMed ID: 31650261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers.
    Chellali MR; Abderrahim H; Hamou A; Nebatti A; Janovec J
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14008-17. PubMed ID: 27040548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring rice nitrogen status using hyperspectral reflectance and artificial neural network.
    Yi QX; Huang JF; Wang FM; Wang XZ; Liu ZY
    Environ Sci Technol; 2007 Oct; 41(19):6770-5. PubMed ID: 17969693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal Structure Representation for Neural Networks using Topological Approach.
    Fedorov AV; Shamanaev IV
    Mol Inform; 2017 Aug; 36(8):. PubMed ID: 28266179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.