BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26463109)

  • 1. McpQ is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexes.
    Martín-Mora D; Reyes-Darias JA; Ortega Á; Corral-Lugo A; Matilla MA; Krell T
    Environ Microbiol; 2016 Oct; 18(10):3284-3295. PubMed ID: 26463109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiologically relevant divalent cations modulate citrate recognition by the McpS chemoreceptor.
    Lacal J; García-Fontana C; Callejo-García C; Ramos JL; Krell T
    J Mol Recognit; 2011; 24(2):378-85. PubMed ID: 21360620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two citrate chemoreceptors involved in chemotaxis to citrate and/or citrate-metal complexes in Ralstonia pseudosolanacearum.
    Hida A; Tajima T; Kato J
    J Biosci Bioeng; 2019 Feb; 127(2):169-175. PubMed ID: 30082220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: differential chemotactic response towards receptor ligands.
    Lacal J; Alfonso C; Liu X; Parales RE; Morel B; Conejero-Lara F; Rivas G; Duque E; Ramos JL; Krell T
    J Biol Chem; 2010 Jul; 285(30):23126-36. PubMed ID: 20498372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids.
    Parales RE; Luu RA; Chen GY; Liu X; Wu V; Lin P; Hughes JG; Nesteryuk V; Parales JV; Ditty JL
    Microbiology (Reading); 2013 Jun; 159(Pt 6):1086-1096. PubMed ID: 23618999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a Chemoreceptor for C2 and C3 Carboxylic Acids.
    García V; Reyes-Darias JA; Martín-Mora D; Morel B; Matilla MA; Krell T
    Appl Environ Microbiol; 2015 Aug; 81(16):5449-57. PubMed ID: 26048936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization and crystallographic analysis of the ligand-binding domain of the Pseudomonas putida chemoreceptor McpS in complex with malate and succinate.
    Gavira JA; Lacal J; Ramos JL; García-Ruiz JM; Krell T; Pineda-Molina E
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Apr; 68(Pt 4):428-31. PubMed ID: 22505412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the contribution of chemoreceptor-based signalling to biofilm formation.
    Corral-Lugo A; De la Torre J; Matilla MA; Fernández M; Morel B; Espinosa-Urgel M; Krell T
    Environ Microbiol; 2016 Oct; 18(10):3355-3372. PubMed ID: 26662997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists.
    Martín-Mora D; Ortega Á; Pérez-Maldonado FJ; Krell T; Matilla MA
    Sci Rep; 2018 Feb; 8(1):2102. PubMed ID: 29391435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ligand-binding domain of a chemoreceptor from Comamonas testosteroni has a previously unknown homotrimeric structure.
    Hong Y; Huang Z; Guo L; Ni B; Jiang CY; Li XJ; Hou YJ; Yang WS; Wang DC; Zhulin IB; Liu SJ; Li DF
    Mol Microbiol; 2019 Sep; 112(3):906-917. PubMed ID: 31177588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncanonical Sensing Mechanisms for Bacillus subtilis Chemoreceptors.
    Matilla MA; Krell T
    J Bacteriol; 2022 Apr; 204(4):e0002722. PubMed ID: 35323015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Affinity Chemotaxis to Histamine Mediated by the TlpQ Chemoreceptor of the Human Pathogen Pseudomonas aeruginosa.
    Corral-Lugo A; Matilla MA; Martín-Mora D; Silva Jiménez H; Mesa Torres N; Kato J; Hida A; Oku S; Conejero-Muriel M; Gavira JA; Krell T
    mBio; 2018 Nov; 9(6):. PubMed ID: 30425146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between signal input and output in PctA and PctB amino acid chemoreceptor of Pseudomonas aeruginosa.
    Reyes-Darias JA; Yang Y; Sourjik V; Krell T
    Mol Microbiol; 2015 May; 96(3):513-25. PubMed ID: 25641105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds.
    Ni B; Huang Z; Fan Z; Jiang CY; Liu SJ
    Mol Microbiol; 2013 Nov; 90(4):813-23. PubMed ID: 24102855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Basis for Polyamine Binding at the dCACHE Domain of the McpU Chemoreceptor from Pseudomonas putida.
    Gavira JA; Ortega Á; Martín-Mora D; Conejero-Muriel MT; Corral-Lugo A; Morel B; Matilla MA; Krell T
    J Mol Biol; 2018 Jun; 430(13):1950-1963. PubMed ID: 29758259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-throughput screen for ligand binding reveals the specificities of three amino acid chemoreceptors from Pseudomonas syringae pv. actinidiae.
    McKellar JL; Minnell JJ; Gerth ML
    Mol Microbiol; 2015 May; 96(4):694-707. PubMed ID: 25656450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of the binding affinity of chemoreceptors Mlp24p and Mlp37p for various amino acids.
    Takahashi Y; Nishiyama SI; Kawagishi I; Imada K
    Biochem Biophys Res Commun; 2020 Feb; 523(1):233-238. PubMed ID: 31862138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous Expression of Pseudomonas putida Methyl-Accepting Chemotaxis Proteins Yields Escherichia coli Cells Chemotactic to Aromatic Compounds.
    Roggo C; Clerc EE; Hadadi N; Carraro N; Stocker R; van der Meer JR
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30006400
    [No Abstract]   [Full Text] [Related]  

  • 19. Identification of a malate chemoreceptor in Pseudomonas aeruginosa by screening for chemotaxis defects in an energy taxis-deficient mutant.
    Alvarez-Ortega C; Harwood CS
    Appl Environ Microbiol; 2007 Dec; 73(23):7793-5. PubMed ID: 17933940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of methyl-accepting chemotaxis proteins (MCPs) for amino acids in plant-growth-promoting rhizobacterium
    Hida A; Oku S; Miura M; Matsuda H; Tajima T; Kato J
    Biosci Biotechnol Biochem; 2020 Sep; 84(9):1948-1957. PubMed ID: 32538292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.