These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26463208)

  • 1. Dysregulation of Plasmalogen Homeostasis Impairs Cholesterol Biosynthesis.
    Honsho M; Abe Y; Fujiki Y
    J Biol Chem; 2015 Nov; 290(48):28822-33. PubMed ID: 26463208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmalogen homeostasis - regulation of plasmalogen biosynthesis and its physiological consequence in mammals.
    Honsho M; Fujiki Y
    FEBS Lett; 2017 Sep; 591(18):2720-2729. PubMed ID: 28686302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of plasmalogen biosynthesis in mammalian cells and tissues.
    Honsho M; Fujiki Y
    Brain Res Bull; 2023 Mar; 194():118-123. PubMed ID: 36720320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmalogen biosynthesis is spatiotemporally regulated by sensing plasmalogens in the inner leaflet of plasma membranes.
    Honsho M; Abe Y; Fujiki Y
    Sci Rep; 2017 Mar; 7():43936. PubMed ID: 28272479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential use of E2 ubiquitin conjugating enzymes for regulated degradation of the rate-limiting enzymes HMGCR and SQLE in cholesterol biosynthesis.
    Tan JME; Cook ECL; van den Berg M; Scheij S; Zelcer N; Loregger A
    Atherosclerosis; 2019 Feb; 281():137-142. PubMed ID: 30658189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topogenesis and homeostasis of fatty acyl-CoA reductase 1.
    Honsho M; Asaoku S; Fukumoto K; Fujiki Y
    J Biol Chem; 2013 Nov; 288(48):34588-98. PubMed ID: 24108123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired plasmalogen synthesis dysregulates liver X receptor-dependent transcription in cerebellum.
    Honsho M; Dorninger F; Abe Y; Setoyama D; Ohgi R; Uchiumi T; Kang D; Berger J; Fujiki Y
    J Biochem; 2019 Oct; 166(4):353-361. PubMed ID: 31135054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase.
    Gill S; Stevenson J; Kristiana I; Brown AJ
    Cell Metab; 2011 Mar; 13(3):260-73. PubMed ID: 21356516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-canonical ubiquitination of the cholesterol-regulated degron of squalene monooxygenase.
    Chua NK; Hart-Smith G; Brown AJ
    J Biol Chem; 2019 May; 294(20):8134-8147. PubMed ID: 30940729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway.
    Zelcer N; Sharpe LJ; Loregger A; Kristiana I; Cook EC; Phan L; Stevenson J; Brown AJ
    Mol Cell Biol; 2014 Apr; 34(7):1262-70. PubMed ID: 24449766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the cholesterol metabolism-perturbing effects of docosahexaenoic acid by gas chromatography-mass spectrometry targeted metabonomic profiling.
    Bahety P; Van Nguyen TH; Hong Y; Zhang L; Chan ECY; Ee PLR
    Eur J Nutr; 2017 Feb; 56(1):29-43. PubMed ID: 26428672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological feedback regulation of cholesterol biosynthesis: Role of translational control of hepatic HMG-CoA reductase and possible involvement of oxylanosterols.
    Ness GC
    Biochim Biophys Acta; 2015 May; 1851(5):667-73. PubMed ID: 25701719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into cellular cholesterol acquisition: promoter analysis of human HMGCR and SQLE, two key control enzymes in cholesterol synthesis.
    Howe V; Sharpe LJ; Prabhu AV; Brown AJ
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Jul; 1862(7):647-657. PubMed ID: 28342963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A key mammalian cholesterol synthesis enzyme, squalene monooxygenase, is allosterically stabilized by its substrate.
    Yoshioka H; Coates HW; Chua NK; Hashimoto Y; Brown AJ; Ohgane K
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7150-7158. PubMed ID: 32170014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of cholesterol biosynthesis in Schwann cells.
    Fu Q; Goodrum JF; Hayes C; Hostettler JD; Toews AD; Morell P
    J Neurochem; 1998 Aug; 71(2):549-55. PubMed ID: 9681444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OSBPL2 deficiency upregulate SQLE expression increasing intracellular cholesterol and cholesteryl ester by AMPK/SP1 and SREBF2 signalling pathway.
    Zhang C; Zhang H; Zhang M; Lin C; Wang H; Yao J; Wei Q; Lu Y; Chen Z; Xing G; Cao X
    Exp Cell Res; 2019 Oct; 383(2):111512. PubMed ID: 31356817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forward genetic screening for regulators involved in cholesterol synthesis using validation-based insertional mutagenesis.
    Jiang W; Tang JJ; Miao HH; Qu YX; Qin J; Xu J; Yang J; Li BL; Song BL
    PLoS One; 2014; 9(11):e112632. PubMed ID: 25426949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Regulatory Domain of Squalene Monooxygenase Contains a Re-entrant Loop and Senses Cholesterol via a Conformational Change.
    Howe V; Chua NK; Stevenson J; Brown AJ
    J Biol Chem; 2015 Nov; 290(46):27533-44. PubMed ID: 26434806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Squalene mono-oxygenase, a key enzyme in cholesterol synthesis, is stabilized by unsaturated fatty acids.
    Stevenson J; Luu W; Kristiana I; Brown AJ
    Biochem J; 2014 Aug; 461(3):435-42. PubMed ID: 24840124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Posttranslational regulation of fatty acyl-CoA reductase 1, Far1, controls ether glycerophospholipid synthesis.
    Honsho M; Asaoku S; Fujiki Y
    J Biol Chem; 2010 Mar; 285(12):8537-42. PubMed ID: 20071337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.