These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26463272)

  • 41. Learning attractors in an asynchronous, stochastic electronic neural network.
    Del Giudice P; Fusi S; Badoni D; Dante V; Amit DJ
    Network; 1998 May; 9(2):183-205. PubMed ID: 9861985
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A neuromorphic architecture for object recognition and motion anticipation using burst-STDP.
    Nere A; Olcese U; Balduzzi D; Tononi G
    PLoS One; 2012; 7(5):e36958. PubMed ID: 22615855
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A robust sound perception model suitable for neuromorphic implementation.
    Coath M; Sheik S; Chicca E; Indiveri G; Denham SL; Wennekers T
    Front Neurosci; 2013; 7():278. PubMed ID: 24478621
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microelectronic packaging for retinal prostheses.
    Rodger DC; Tai YC
    IEEE Eng Med Biol Mag; 2005; 24(5):52-7. PubMed ID: 16248117
    [No Abstract]   [Full Text] [Related]  

  • 45. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 46. STDP-based spiking deep convolutional neural networks for object recognition.
    Kheradpisheh SR; Ganjtabesh M; Thorpe SJ; Masquelier T
    Neural Netw; 2018 Mar; 99():56-67. PubMed ID: 29328958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA.
    Rabiul Islam M; Khademul Islam Molla M; Nakanishi M; Tanaka T
    J Neural Eng; 2017 Apr; 14(2):026007. PubMed ID: 28071599
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effective multifocus image fusion based on HVS and BP neural network.
    Yang Y; Zheng W; Huang S
    ScientificWorldJournal; 2014; 2014():281073. PubMed ID: 24683327
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A fully spiking coupled model of a deep neural network and a recurrent attractor explains dynamics of decision making in an object recognition task.
    Sadeghnejad N; Ezoji M; Ebrahimpour R; Qodosi M; Zabbah S
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38506115
    [No Abstract]   [Full Text] [Related]  

  • 50. Hardware friendly probabilistic spiking neural network with long-term and short-term plasticity.
    Hsieh HY; Tang KT
    IEEE Trans Neural Netw Learn Syst; 2013 Dec; 24(12):2063-74. PubMed ID: 24805223
    [TBL] [Abstract][Full Text] [Related]  

  • 51. System-on-chip design for ultrasonic target detection using split-spectrum processing and neural networks.
    Saniie J; Oruklu E; Yoon S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1354-68. PubMed ID: 22828831
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep Learning in Medical Image Analysis.
    Shen D; Wu G; Suk HI
    Annu Rev Biomed Eng; 2017 Jun; 19():221-248. PubMed ID: 28301734
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Getting to know your neighbors: unsupervised learning of topography from real-world, event-based input.
    Boerlin M; Delbruck T; Eng K
    Neural Comput; 2009 Jan; 21(1):216-38. PubMed ID: 19431283
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Binary morphology with spatially variant structuring elements: algorithm and architecture.
    Hedberg H; Dokladal P; Owall V
    IEEE Trans Image Process; 2009 Mar; 18(3):562-72. PubMed ID: 19211332
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization.
    Kulkarni SR; Rajendran B
    Neural Netw; 2018 Jul; 103():118-127. PubMed ID: 29674234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Context-dependent retrieval of information by neural-network dynamics with continuous attractors.
    Tsuboshita Y; Okamoto H
    Neural Netw; 2007 Aug; 20(6):705-13. PubMed ID: 17446042
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Learning viewpoint invariant perceptual representations from cluttered images.
    Spratling MW
    IEEE Trans Pattern Anal Mach Intell; 2005 May; 27(5):753-61. PubMed ID: 15875796
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deep associative neural network for associative memory based on unsupervised representation learning.
    Liu J; Gong M; He H
    Neural Netw; 2019 May; 113():41-53. PubMed ID: 30780044
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental Demonstration of Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses.
    Nandakumar SR; Boybat I; Le Gallo M; Eleftheriou E; Sebastian A; Rajendran B
    Sci Rep; 2020 May; 10(1):8080. PubMed ID: 32415108
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Learning to represent continuous variables in heterogeneous neural networks.
    Darshan R; Rivkind A
    Cell Rep; 2022 Apr; 39(1):110612. PubMed ID: 35385721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.