These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

764 related articles for article (PubMed ID: 26463355)

  • 41. Budget impact analysis of robotic exoskeleton use for locomotor training following spinal cord injury in four SCI Model Systems.
    Pinto D; Garnier M; Barbas J; Chang SH; Charlifue S; Field-Fote E; Furbish C; Tefertiller C; Mummidisetty CK; Taylor H; Jayaraman A; Heinemann AW
    J Neuroeng Rehabil; 2020 Jan; 17(1):4. PubMed ID: 31924224
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Overground walking with a robotic exoskeleton elicits trunk muscle activity in people with high-thoracic motor-complete spinal cord injury.
    Alamro RA; Chisholm AE; Williams AMM; Carpenter MG; Lam T
    J Neuroeng Rehabil; 2018 Nov; 15(1):109. PubMed ID: 30458839
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals.
    Hayes SC; White M; White HSF; Vanicek N
    Clin Biomech (Bristol); 2020 Dec; 80():105133. PubMed ID: 32777685
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparing walking with knee-ankle-foot orthoses and a knee-powered exoskeleton after spinal cord injury: a randomized, crossover clinical trial.
    Rodríguez-Fernández A; Lobo-Prat J; Tarragó R; Chaverri D; Iglesias X; Guirao-Cano L; Font-Llagunes JM
    Sci Rep; 2022 Nov; 12(1):19150. PubMed ID: 36351989
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results.
    Molteni F; Gasperini G; Gaffuri M; Colombo M; Giovanzana C; Lorenzon C; Farina N; Cannaviello G; Scarano S; Proserpio D; Liberali D; Guanziroli E
    Eur J Phys Rehabil Med; 2017 Oct; 53(5):676-684. PubMed ID: 28118698
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Powered single hip joint exoskeletons for gait rehabilitation: a systematic review and Meta-analysis.
    Daliri M; Ghorbani M; Akbarzadeh A; Negahban H; Ebrahimzadeh MH; Rahmanipour E; Moradi A
    BMC Musculoskelet Disord; 2024 Jan; 25(1):80. PubMed ID: 38245729
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gait robot-assisted rehabilitation in persons with spinal cord injury: A scoping review.
    Stampacchia G; Gazzotti V; Olivieri M; Andrenelli E; Bonaiuti D; Calabro RS; Carmignano SM; Cassio A; Fundaro C; Companini I; Mazzoli D; Cerulli S; Chisari C; Colombo V; Dalise S; Mazzoleni D; Melegari C; Merlo A; Boldrini P; Mazzoleni S; Posteraro F; Mazzucchelli M; Benanti P; Castelli E; Draicchio F; Falabella V; Galeri S; Gimigliano F; Grigioni M; Mazzon S; Molteni F; Morone G; Petrarca M; Picelli A; Senatore M; Turchetti G; Bizzarrini E
    NeuroRehabilitation; 2022; 51(4):609-647. PubMed ID: 36502343
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of locomotor training after incomplete spinal cord injury: a systematic review.
    Morawietz C; Moffat F
    Arch Phys Med Rehabil; 2013 Nov; 94(11):2297-308. PubMed ID: 23850614
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury.
    Sale P; Franceschini M; Waldner A; Hesse S
    Eur J Phys Rehabil Med; 2012 Mar; 48(1):111-21. PubMed ID: 22543557
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exoskeletons for Personal Use After Spinal Cord Injury.
    Kandilakis C; Sasso-Lance E
    Arch Phys Med Rehabil; 2021 Feb; 102(2):331-337. PubMed ID: 31228407
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A systematic review of the determinants of implementation of a locomotor training program using a powered exoskeleton for individuals with a spinal cord injury.
    Charette C; Déry J; Blanchette AK; Faure C; Routhier F; Bouyer LJ; Lamontagne ME
    Clin Rehabil; 2023 Aug; 37(8):1119-1138. PubMed ID: 37036438
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Walking with a powered robotic exoskeleton: Subjective experience, spasticity and pain in spinal cord injured persons.
    Stampacchia G; Rustici A; Bigazzi S; Gerini A; Tombini T; Mazzoleni S
    NeuroRehabilitation; 2016 Jun; 39(2):277-83. PubMed ID: 27372363
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study.
    Sanz-Morère CB; Martini E; Meoni B; Arnetoli G; Giffone A; Doronzio S; Fanciullacci C; Parri A; Conti R; Giovacchini F; Friðriksson Þ; Romo D; Crea S; Molino-Lova R; Vitiello N
    J Neuroeng Rehabil; 2021 Jul; 18(1):111. PubMed ID: 34217307
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of gait between healthy participants and persons with spinal cord injury when using a powered gait orthosis-a pilot study.
    Arazpour M; Mehrpour SR; Bani MA; Hutchins SW; Bahramizadeh M; Rahgozar M
    Spinal Cord; 2014 Jan; 52(1):44-8. PubMed ID: 24296806
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study.
    Benson I; Hart K; Tussler D; van Middendorp JJ
    Clin Rehabil; 2016 Jan; 30(1):73-84. PubMed ID: 25761635
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neuromuscular Controller Embedded in a Powered Ankle Exoskeleton: Effects on Gait, Clinical Features and Subjective Perspective of Incomplete Spinal Cord Injured Subjects.
    Tamburella F; Tagliamonte NL; Pisotta I; Masciullo M; Arquilla M; van Asseldonk EHF; van der Kooij H; Wu AR; Dzeladini F; Ijspeert AJ; Molinari M
    IEEE Trans Neural Syst Rehabil Eng; 2020 May; 28(5):1157-1167. PubMed ID: 32248116
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The efficacy of powered orthoses on walking in persons with paraplegia.
    Arazpour M; Hutchins SW; Ahmadi Bani M
    Prosthet Orthot Int; 2015 Apr; 39(2):90-9. PubMed ID: 24549210
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Training with robot-applied resistance in people with motor-incomplete spinal cord injury: Pilot study.
    Lam T; Pauhl K; Ferguson A; Malik RN; ; Krassioukov A; Eng JJ
    J Rehabil Res Dev; 2015; 52(1):113-29. PubMed ID: 26230667
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exoskeleton-assisted walking improves pulmonary function and walking parameters among individuals with spinal cord injury: a randomized controlled pilot study.
    Xiang XN; Zong HY; Ou Y; Yu X; Cheng H; Du CP; He HC
    J Neuroeng Rehabil; 2021 May; 18(1):86. PubMed ID: 34030720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.