These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 26463421)

  • 1. Controllable degradation kinetics of POSS nanoparticle-integrated poly(ε-caprolactone urea)urethane elastomers for tissue engineering applications.
    Yildirimer L; Buanz A; Gaisford S; Malins EL; Remzi Becer C; Moiemen N; Reynolds GM; Seifalian AM
    Sci Rep; 2015 Oct; 5():15040. PubMed ID: 26463421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds.
    Hong Y; Guan J; Fujimoto KL; Hashizume R; Pelinescu AL; Wagner WR
    Biomaterials; 2010 May; 31(15):4249-58. PubMed ID: 20188411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane.
    Raghunath J; Georgiou G; Armitage D; Nazhat SN; Sales KM; Butler PE; Seifalian AM
    J Biomed Mater Res A; 2009 Dec; 91(3):834-44. PubMed ID: 19051308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal and mechanical properties of hydroxyl-terminated polybutadiene-based polyurethane/polyhedral oligomeric silsesquioxane nanocomposites plasticized with DOA.
    Kim HJ; Kwon Y; Kim CK
    J Nanosci Nanotechnol; 2013 Jan; 13(1):577-81. PubMed ID: 23646777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization.
    Felfel RM; Poocza L; Gimeno-Fabra M; Milde T; Hildebrand G; Ahmed I; Scotchford C; Sottile V; Grant DM; Liefeith K
    Biomed Mater; 2016 Feb; 11(1):015011. PubMed ID: 26836023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of porosity on the hemocompatibility of polyhedral oligomeric silsesquioxane poly (caprolactone-urea) urethane.
    Zhao J; Farhatnia Y; Kalaskar DM; Zhang Y; Bulter PE; Seifalian AM
    Int J Biochem Cell Biol; 2015 Nov; 68():176-86. PubMed ID: 26279141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional polyhedral oligomeric silsesquioxane reinforced poly(lactic acid) nanocomposites for biomedical applications.
    Huang L; Tan J; Li W; Zhou L; Liu Z; Luo B; Lu L; Zhou C
    J Mech Behav Biomed Mater; 2019 Feb; 90():604-614. PubMed ID: 30500698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation-induced changes of mechanical properties of an electro-spun polyester-urethane scaffold for soft tissue regeneration.
    Krynauw H; Bruchmüller L; Bezuidenhout D; Zilla P; Franz T
    J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):359-68. PubMed ID: 21948379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sterilization-Induced Changes in Surface Topography of Biodegradable POSS-PCLU and the Cellular Response of Human Dermal Fibroblasts.
    Yildirimer L; Seifalian AM
    Tissue Eng Part C Methods; 2015 Jun; 21(6):614-30. PubMed ID: 25398409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(caprolactone-co-oxo-crown ether)-based poly(urethane)urea for soft tissue engineering applications.
    Wisse E; Renken RA; Roosma JR; Palmans AR; Meijer EW
    Biomacromolecules; 2007 Sep; 8(9):2739-45. PubMed ID: 17672503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of biodegradable crosslinked urethane-doped polyester elastomers.
    Dey J; Xu H; Shen J; Thevenot P; Gondi SR; Nguyen KT; Sumerlin BS; Tang L; Yang J
    Biomaterials; 2008 Dec; 29(35):4637-49. PubMed ID: 18801566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new biodegradable nanocomposite based on polyhedral oligomeric silsesquioxane nanocages: cytocompatibility and investigation into electrohydrodynamic jet fabrication techniques for tissue-engineered scaffolds.
    Raghunath J; Zhang H; Edirisinghe MJ; Darbyshire A; Butler PE; Seifalian AM
    Biotechnol Appl Biochem; 2009 Jan; 52(Pt 1):1-8. PubMed ID: 18402554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow chlorine releasing compounds: A viable sterilisation method for bioabsorbable nanocomposite biomaterials.
    Naderi N; Griffin M; Malins E; Becer R; Mosahebi A; Whitaker IS; Seifalian AM
    J Biomater Appl; 2016 Feb; 30(7):1114-24. PubMed ID: 26538358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of resorbable nanocomposite tracheal and bronchial scaffolds for paediatric applications.
    Teoh GZ; Crowley C; Birchall MA; Seifalian AM
    Br J Surg; 2015 Jan; 102(2):e140-50. PubMed ID: 25627127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Biodegradable Poly(citrate)-Polyhedral Oligomeric Silsesquioxanes Hybrid Elastomers with High Mechanical Properties and Osteogenic Differentiation Activity.
    Du Y; Yu M; Chen X; Ma PX; Lei B
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3079-91. PubMed ID: 26765285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration.
    Xu C; Huang Y; Tang L; Hong Y
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2169-2180. PubMed ID: 28036169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun biodegradable calcium containing poly(ester-urethane)urea: synthesis, fabrication, in vitro degradation, and biocompatibility evaluation.
    Nair PA; Ramesh P
    J Biomed Mater Res A; 2013 Jul; 101(7):1876-87. PubMed ID: 23712992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine.
    Guan J; Sacks MS; Beckman EJ; Wagner WR
    J Biomed Mater Res; 2002 Sep; 61(3):493-503. PubMed ID: 12115475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release.
    Guan J; Stankus JJ; Wagner WR
    J Control Release; 2007 Jul; 120(1-2):70-8. PubMed ID: 17509717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.