These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 26463524)
1. Oxidative Degradation of the Monolayer of 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (POPC) in Low-Level Ozone. Qiao L; Ge A; Liang Y; Ye S J Phys Chem B; 2015 Nov; 119(44):14188-99. PubMed ID: 26463524 [TBL] [Abstract][Full Text] [Related]
2. Degradation and rearrangement of a lung surfactant lipid at the air-water interface during exposure to the pollutant gas ozone. Thompson KC; Jones SH; Rennie AR; King MD; Ward AD; Hughes BR; Lucas CO; Campbell RA; Hughes AV Langmuir; 2013 Apr; 29(14):4594-602. PubMed ID: 23480170 [TBL] [Abstract][Full Text] [Related]
3. Structure and stability studies of mixed monolayers of saturated and unsaturated phospholipids under low-level ozone. Qiao L; Ge A; Osawa M; Ye S Phys Chem Chem Phys; 2013 Nov; 15(41):17775-85. PubMed ID: 24042267 [TBL] [Abstract][Full Text] [Related]
4. Reaction of a phospholipid monolayer with gas-phase ozone at the air-water interface: measurement of surface excess and surface pressure in real time. Thompson KC; Rennie AR; King MD; Hardman SJ; Lucas CO; Pfrang C; Hughes BR; Hughes AV Langmuir; 2010 Nov; 26(22):17295-303. PubMed ID: 20883049 [TBL] [Abstract][Full Text] [Related]
5. Inoue KI; Takada C; Wang L; Morita A; Ye S J Phys Chem B; 2020 Jun; 124(25):5246-5250. PubMed ID: 32478516 [TBL] [Abstract][Full Text] [Related]
6. Quantitative Evaluation on the Degradation Process of the Pulmonary Surfactant Monolayer When Exposed to Low-Level Ozone of Ambient Environment. Qiao L; Chen Z; Takada C; Chiba H; Inoue KI; Hui SP; Ye S Anal Chem; 2022 Jun; 94(24):8651-8658. PubMed ID: 35605232 [TBL] [Abstract][Full Text] [Related]
7. Studied on the dynamic adsorption process of Lycium barbarum polysaccharide in the POPC/DPPC monolayers. Zhang Z; Hao C; Qu H; Sun R Colloids Surf B Biointerfaces; 2019 Jun; 178():38-43. PubMed ID: 30826552 [TBL] [Abstract][Full Text] [Related]
8. Mixed DPPC/POPC Monolayers: All-atom Molecular Dynamics Simulations and Langmuir Monolayer Experiments. Olżyńska A; Zubek M; Roeselova M; Korchowiec J; Cwiklik L Biochim Biophys Acta; 2016 Dec; 1858(12):3120-3130. PubMed ID: 27664500 [TBL] [Abstract][Full Text] [Related]
9. Electric polarizability of lipid bilayers: The influence of the structure. Soussi J; Chalopin Y J Chem Phys; 2015 Oct; 143(14):144904. PubMed ID: 26472395 [TBL] [Abstract][Full Text] [Related]
10. Material properties of matrix lipids determine the conformation and intermolecular reactivity of diacetylenic phosphatidylcholine in the lipid bilayer. Puri A; Jang H; Yavlovich A; Masood MA; Veenstra TD; Luna C; Aranda-Espinoza H; Nussinov R; Blumenthal R Langmuir; 2011 Dec; 27(24):15120-8. PubMed ID: 22053903 [TBL] [Abstract][Full Text] [Related]
11. Activation of phospholipase A2 in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes containing lipid ozonation products. Salgo MG; Squadrito GL; Pryor WA Chem Res Toxicol; 1994; 7(3):458-62. PubMed ID: 8075380 [TBL] [Abstract][Full Text] [Related]
13. Effect of high pressure on fully hydrated DPPC and POPC bilayers. Chen R; Poger D; Mark AE J Phys Chem B; 2011 Feb; 115(5):1038-44. PubMed ID: 21194215 [TBL] [Abstract][Full Text] [Related]
14. Interaction of POPC, DPPC, and POPE with the μ opioid receptor: A coarse-grained molecular dynamics study. Angladon MA; Fossépré M; Leherte L; Vercauteren DP PLoS One; 2019; 14(3):e0213646. PubMed ID: 30870466 [TBL] [Abstract][Full Text] [Related]
15. Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipids? Mattjus P; Slotte JP Chem Phys Lipids; 1996 Jun; 81(1):69-80. PubMed ID: 9450320 [TBL] [Abstract][Full Text] [Related]
16. Adsorption behavior of DNA on phosphatidylcholine at the air-water interface. Qu H; Hao C; Zhang Z; Xu Z; Sun R Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():505-510. PubMed ID: 30889725 [TBL] [Abstract][Full Text] [Related]
17. Effect of Fe Xu Z; Hao C; Xie B; Sun R Scanning; 2019; 2019():5712937. PubMed ID: 30944689 [TBL] [Abstract][Full Text] [Related]
18. Thermal and 13C-NMR study of the dynamic structure of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine and 1-oleyl-2-palmitoyl-sn-glycero-3-phosphocholine in aqueous dispersions. Santaren JF; Rico M; Guilleme J; Ribera A Biochim Biophys Acta; 1982 May; 687(2):231-7. PubMed ID: 7093254 [TBL] [Abstract][Full Text] [Related]
19. Distributions of hydroperoxide positional isomers generated by oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine in liposomes and in methanol solution. Wang XH; Ushio H; Ohshima T Lipids; 2003 Jan; 38(1):65-72. PubMed ID: 12669821 [TBL] [Abstract][Full Text] [Related]
20. Chemical and physical requirements for lipid extraction by bovine binder of sperm BSP1. Therrien A; Manjunath P; Lafleur M Biochim Biophys Acta; 2013 Feb; 1828(2):543-51. PubMed ID: 22960042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]